【题目】已知函数为偶函数,当时,,则的解集为( )
A. B. C. D.
【答案】A
【解析】
根据x∈[0,+∞)时,f(x)=x﹣1,需分x﹣1≥0与x﹣1<0讨论解决,最后取其并集即可.
∵当x∈[0,+∞)时,f(x)=x﹣1,
∴x﹣1≥0,即x≥1时,f(x﹣1)=(x﹣1)﹣1=x﹣2<0,解得x<2,
∴1≤x<2;
即x≥1时,不等式f(x﹣1)<0的解集为{x|1≤x<2};
又函数f(x)是偶函数,
∴x﹣1<0即x<1时,f(x﹣1)=f(1﹣x)=(1﹣x)﹣1=﹣x<0,解得x>0,
∴0<x<1.
即x<1时,不等式f(x﹣1)<0的解集为{x|0<x<1};
∴不等式f(x﹣1)<0的解集为{x|1≤x<2}∪{x|0<x<1}={x|0<x<2}.
故选:A.
科目:高中数学 来源: 题型:
【题目】在数列{an}中,a1=1,3anan﹣1+an﹣an﹣1=0(n≥2).
(1)求证:数列{ }等差数列;
(2)数列bn=anan+1 , 求数列bn的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某轮船公司的一艘轮船每小时花费的燃料费与轮船航行速度的平方成正比,比例系数为轮船的最大速度为15海里小时当船速为10海里小时,它的燃料费是每小时96元,其余航行运作费用(不论速度如何)总计是每小时150元假定运行过程中轮船以速度v匀速航行.
求k的值;
求该轮船航行100海里的总费用燃料费航行运作费用的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次项系数是1的二次函数.
当,时,求方程的实根;
设b和c都是整数,若有四个不同的实数根,并且在数轴上四个根等距排列,试求二次函数的解析式,使得其所有项的系数和最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数与雾霾天数进行统计分析,得出下表数据.
4 | 5 | 7 | 8 | |
2 | 3 | 5 | 6 |
(1)请画出上表数据的散点图,并说明其相关关系;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为9的雾霾天数.
(相关公式:, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上且以2为周期的偶函数,当0≤x≤1,f(x)=x2 . 如果函数g(x)=f(x)﹣(x+m)有两个零点,则实数m的值为( )
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)=ex+2x2-3x.
(1)求证:函数f (x)在区间[0,1]上存在唯一的极值点.
(2)当x≥时,若关于x的不等式f (x)≥ x2+(a-3)x+1恒成立,试求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)= ,g(x)=|x﹣2|,则下列结论正确的是( )
A.h(x)=f(x)+g(x)是偶函数
B.h(x)=f(x)?g(x)是奇函数
C.h(x)= 是偶函数
D.h(x)= 是奇函数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com