【题目】给出以下三个条件:
①数列是首项为 2,满足的数列;
②数列是首项为2,满足(λ∈R)的数列;
③数列是首项为2,满足的数列..
请从这三个条件中任选一个将下面的题目补充完整,并求解.
设数列的前n项和为,与满足______,记数列,,求数列{}的前n项和;
(注:如选择多个条件分别解答,按第一个解答计分)
科目:高中数学 来源: 题型:
【题目】如图所示,圆锥的底面半径为2,是圆周上的定点,动点在圆周上逆时针旋转,设(),是母线的中点,已知当时,与底面所成角为.
(1)求该圆锥的侧面积;
(2)若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,点在椭圆上,,,且的离心率为,抛物线,点在上.
(1)求椭圆的方程;
(2)过点作的切线,若,直线与交于两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的普通方程为,直线的参数方程为(为参数),其中.以坐标为极点,以轴非负半轴为极轴,建立极坐标系.
(1)求曲线的极坐标方程和直线的普通方程;
(2)设点,的极坐标方程为,直线与的交点分别为,.当为等腰直角三角形时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记无穷数列的前n项,,…,的最大项为,第n项之后的各项,,…的最小项为,.
(1)若数列的通项公式为,写出,,;
(2)若数列的通项公式为,判断是否为等差数列,若是,求出公差;若不是,请说明理由;
(3)若数列为公差大于零的等差数列,求证:是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体的棱长为2,点分别是棱的中点,则二面角的余弦值为_________;若动点在正方形(包括边界)内运动,且平面,则线段的长度范围是_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数对任意的都有,且时的最大值为,下列四个结论:①是的一个极值点;②若为奇函数,则的最小正周期;③若为偶函数,则在上单调递增;④的取值范围是.其中一定正确的结论编号是( )
A.①②B.①③C.①②④D.②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com