精英家教网 > 高中数学 > 题目详情
20.如图,⊙O中,弦AD∥BC,DA=DC,∠BCO=15°,则∠AOC等于(  )
A.120°B.130°C.140°D.150°

分析 连接AC.设∠AOC=2x,根据圆周角定理求得∠B,再根据圆内接四边形的对角互补求得∠D,根据等边对等角求得∠DAC和∠OCA,再根据平行线的性质即可求得∠ACB,进一步求得∠BCO,即可得出结论.

解答 解:连接AC,设∠AOC=2x
∵∠B=$\frac{1}{2}$∠AOC=x
∴∠D=180°-x
∵AD=CD,OA=OC
∴∠DAC=∠ACD=$\frac{1}{2}$x,∠OCA=∠OAC=90°-x
∵AD∥BC
∴∠ACB=∠DAC=$\frac{1}{2}$x,
∴∠BCO=$\frac{1}{2}$x-(90°-x)=$\frac{3}{2}$x-90°=15°,
∴x=70°,
∴∠AOC=140°.
故选:C.

点评 此题综合运用了圆周角定理、等边对等角、平行线的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知数列{an}是一个等差数列
(1)a1=1,a4=7,求通项公式an及前n项和Sn
(2)设S7=14,求a3+a5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,PA⊥面ABCD,∠ABC=90°,△ABC≌△ADC,PA=AC=2AB=2,E是线段PC的中点.
(I)求证:DE∥面PAB;
(Ⅱ)求二面角D-CP-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f(x)>f′(x),且f(0)=3,则不等式f(x)>3ex的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,三棱柱ADE-BCF中,四边形ABCD为平行四边形,DE⊥平面ABCD,AD=DE=1,AB=2,∠BCD=60°.
(I)求证:BD⊥AE;
(Ⅱ)若GE=$\frac{1}{2}$DE,求直线CG与平面BDF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的圆O交AC于N,过N作圆O的切线交BC于D,OD交圆O于点M.
(Ⅰ)证明:OD∥AC;
(Ⅱ)证明:$\frac{4DM}{CN}=\frac{DM}{DM+AB}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若m,n是实数,且m>n,则下列结论成立的是(  )
A.lg(m-n)>0B.($\frac{1}{2}$)m<($\frac{1}{2}$)nC.$\frac{n}{m}$<1D.m2>n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:x2-x≥6,命题q:|x-2|≤3;若p∧q与?q同时为假命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|y=log2(5-2x),x∈N},B={x|3x(x-2)≤1},则A∩B等于(  )
A.{x|0≤x≤2}B.{x|1≤x<2}C.{0,1}D.{0,1,2}

查看答案和解析>>

同步练习册答案