精英家教网 > 高中数学 > 题目详情
14.已知空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且$\frac{BG}{GC}=\frac{DH}{HC}$=2,求证:直线EG,FH,AC相交于同一点P.

分析 由题意连接EF、HG、GE、FH、AC,根据比例关系和中位线证明出四边形EFHG是梯形,则由公理二得到直线EG,FH,AC相交于同一点P.

解答 证明:连接EF、HG、GE、FH、AC,如图,
∵BG:GC=DH:HC=2:1,
∴HG∥DB,且HG=$\frac{1}{3}$BD,
∵E、F分别是AB、AD的中点,
∴EF∥BD,且EF=$\frac{1}{2}$BD,
∴四边形EFHG是梯形,∴EG与FH交于点P,
∵平面ABC∩平面ADC=AC,EG?平面ABC,FH?平面ADC,
∴由公理二得:直线EG,FH,AC相交于同一点P.

点评 本题考查了线线平行关系,主要根据平面几何中比例关系和中位线来证明线线平行,即平面几何中的知识在空间几何的一个平面内仍然适用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若3$<(\frac{1}{3})$x<27,则(  )
A.-1<<3B.-3<<-1C.x<-1或x>3D.1<x<3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在锐角△ABC中,角A,B,C,所对的边分别为a,b,c,b=4,c=6,且asinB=2$\sqrt{3}$
(1)求角A的大小;
(2)若D为BC的中点,求线段AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)的图象是由函数h(x)=x2的图象向上平移1个单位长度得到的.(1)求f(x)的解析式:(2)设g(x)=f(x)-mx2,且在(0,2)上g′(x)<0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=log2${\;}^{(a{x}^{2}-2x+2)}$
(1)若f(x)的定义域为实数集R,求实数a的取值范围,并求此时f(x)的值域.
(2)若方程log2${\;}^{(a{x}^{2}-2x+2)}$=2在[$\frac{1}{2}$,2]内有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若角α的终边落在直线x+y=0上,求在[-360°,360°]内的所有满足条件的角α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若关于x的方程$\sqrt{x+1}$-x=m有两个不同的实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知四个函数y=3x,y=x2,y=3x,y=log3x,其中奇函数是(  )
A.y=3xB.y=x2C.y=3xD.y=log3x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.讨论函数f(x)=loga(3x2-2x-1)的单调性.

查看答案和解析>>

同步练习册答案