【题目】已知函数的定义域为区间,若对于内任意,都有成立,则称函数是区间的“函数”.
(1)判断函数()是否是“函数”?说明理由;
(2)已知,求证:函数()是“函数”;
(3)设函数是,()上的“函数”,,且存在使得,试探讨函数在区间上零点个数,并用图象作出简要的说明(结果不需要证明).
科目:高中数学 来源: 题型:
【题目】阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点, 离心率为,左右焦点分别为, 过点的直线交椭圆于两点.
(1)求椭圆C的方程;
(2)当的面积为时, 求以为圆心且与直线相切的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间在两天内,每天生产10件某产品,其中第一天第二天分别生产了1件2件次品,而质检部每天要在生产的10件产品中随意抽取4件进行检查,若发现有次品,则当天的产品不能通过.
(1)求两天全部通过检查的概率;
(2)若厂内对该车间生产的产品质量采用奖惩制度,两天全不通过检查罚300元,通过1天,2天分别奖300元900元.那么该车间在这两天内得到奖金的数学期望是多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体是一个棱长为2的空心蔬菜大棚,由8个钢结构(地面没有)组合搭建而成的,四个侧面及顶上均被可采光的薄膜覆盖,已知为柱上一点(不在点、处),(),菜农需要在地面正方形内画出一条曲线将菜地分隔为两个不同的区域来种植不同品种的蔬菜以加强管理,现已知点为地面正方形内的曲线上任意一点,设、分别为在点处观测和的仰角.
(1)若,请说明曲线是何种曲线,为什么?
(2)若为柱的中点,且时,请求出点所在区域的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com