分析 (1)利用勾股定理证明AB⊥BC,推出CB⊥BB1,然后证明BC⊥平面ABB1A1,得到平面CA1B⊥平面ABB1A1.
(2)取AB的中点D,连结A1D,CD,说明A1CD是直线A1C与平面ABC所成的角,在Rt△A1CD中,转化求解即可.
解答 解:(1)∵AC=5,CB=3,AB=4
∴AC2=BC2+AB2
∴AB⊥BC…(2分)
又∵四边形CBB1C1是矩形
∴CB⊥BB1…(3分)
又∵AB∩BB1=B
∴BC⊥平面ABB1A1
又∵BC?平面CA1B
∴平面CA1B⊥平面ABB1A1…(6分)
(2)取AB的中点D,连结A1D,CD,∵∠A1AB=60°,AA1=AB
∴△AA1B为正三角形
∴A1D⊥AB…(8分)
由(Ⅰ)可知BC⊥平面ABB1A1
∵BC?平面ABC,
∴平面ABC⊥平面ABB1A1
又∵平面ABC∩平面ABB1A1=AB
∴A1D⊥平面ABC
∴CD是A1C在平面ABC上的投影
∴∠A1CD是直线A1C与平面ABC所成的角 …(10分)
在Rt△A1CD中,${A_1}D=2\sqrt{3},CD=\sqrt{13}$
∴$tan∠{A_1}CD=\frac{{{A_1}D}}{CD}=\frac{{2\sqrt{39}}}{13}$
∴直线A1C与平面ABC所成角的正切值为$\frac{{2\sqrt{39}}}{13}$.…(12分)
点评 本题考查直线与平面所成角的求法,平面与平面垂直的判定,直线与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ①④ | B. | ②③ | C. | ①②③ | D. | ②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{3}$ | B. | $\frac{8}{3}$ | C. | $\frac{{8\sqrt{2}}}{3}$ | D. | $\frac{{4\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com