【题目】已知 =(sinx,cosx), =(sinx,sinx),函数f(x)= .
(1)求f(x)的对称轴方程;
(2)求使f(x)≥1成立的x的取值集合;
(3)若对任意实数 ,不等式f(x)﹣m<2恒成立,求实数m的取值范围.
【答案】
(1)解:
=
令 ,解得 .
∴f(x)的对称轴方程为
(2)解:由f(x)≥1得 ,即
∴ .
故x的取值集合为 .
(3)解:∵ ,∴
又∵ 上是增函数,∴
又 ,
∴ 时的最大值是
∵f(x)﹣m<2恒成立,
∴m>f(x)max﹣2,即
∴实数m的取值范围是 .
【解析】(1)利用向量的数量积运算、二倍角的公式,两角差的正弦公式化简解析式,由正弦函数的对称轴和整体思想求出f(x)的对称轴方程;(2)由(1)化简f(x)≥1,由正弦函数的图象与性质列出不等式,求出不等式的解集;(3)由由x的范围求出 的范围,利用正弦函数的性质求出f(x)的最大值,根据条件和恒成立问题列出不等式,求出实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的x,y∈R,有f(x+y)=f(x)f(y),f(1)=2.
(1)求f(0)的值;
(2)求证:对任意x∈R,都有f(x)>0;
(3)解不等式f(3﹣2x)>4.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:实数x满足x2﹣4ax+3a2<0(a>0),命题q:实数x满足 ≤0,
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下的工程只需要建两端桥墩之间的桥面和桥墩.经预测一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为(2+ )x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.假设需要新建n个桥墩.
(1)写出n关于x的函数关系式;
(2)写出y关于x的函数关系式;
(3)当m=640米时,需新建多少个桥墩才能使y最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)为定义在R奇函数,当x>0时,f(x)=﹣2x2+4x+1,
(1)求:当x<0时,f(x)的表达式;
(2)用分段函数写出f(x)的表达式;
(3)若函数h(x)=f(x)﹣a恰有三个零点,求a的取值范围(只要求写出结果).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足(an+1﹣1)(an﹣1)= (an﹣an+1),a1=2,若bn= .
(1)证明:数列{bn}是等差数列;
(2)令cn= ,{cn}的前n项和为Tn , 用数学归纳法证明Tn≥ (n∈N*).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(cos x,sin x), =(cos x,﹣sin x),且x∈[0, ].求:
(1) 及 ;
(2)若f(x)= ﹣2λ 的最小值是﹣ ,求λ的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com