【题目】已知,函数,其中e=2.71828…为自然对数的底数.
(Ⅰ)证明:函数在上有唯一零点;
(Ⅱ)记x0为函数在上的零点,证明:
(ⅰ);
(ⅱ).
【答案】(I)证明见解析,(II)(i)证明见解析,(ii)证明见解析.
【解析】
(I)先利用导数研究函数单调性,再结合零点存在定理证明结论;
(II)(i)先根据零点化简不等式,转化求两个不等式恒成立,构造差函数,利用导数求其单调性,根据单调性确定最值,即可证得不等式;
(ii)先根据零点条件转化:,再根据放缩,转化为证明不等式,最后构造差函数,利用导数进行证明.
(I)在上单调递增,
,
所以由零点存在定理得在上有唯一零点;
(II)(i),
,
令
一方面: ,
在单调递增,,
,
另一方面:,
所以当时,成立,
因此只需证明当时,
因为
当时,,当时,,
所以,
在单调递减,,,
综上,.
(ii),
,,
,因为,所以,
,
只需证明,
即只需证明,
令,
则,
,即成立,
因此.
科目:高中数学 来源: 题型:
【题目】已知等差数列和等比数列的各项均为整数,它们的前项和分别为,且,.
(1)求数列,的通项公式;
(2)求;
(3)是否存在正整数,使得恰好是数列或中的项?若存在,求出所有满足条件的的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.曲线的极坐标方程为,曲线与曲线的交线为直线.
(1)求直线和曲线的直角坐标方程;
(2)直线与轴交于点,与曲线相交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校举办的体育节设有投篮项目.该项目规定:每位同学仅有三次投篮机会,其中前两次投篮每投中一次得1分,第三次投篮投中得2分,若不中不得分,投完三次后累计总分.
(1)若甲同学每次投篮命中的概率为,且相互不影响,记甲同学投完三次后的总分为X,求随机变量X的概率分布列;
(2)若(1)中的甲同学邀请乙同学一起参加投篮项目,已知乙同学每次投篮命中的概率为,且相互不影响,甲、乙两人之间互不干扰.求甲同学的总分低于乙同学的总分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为原点,抛物线的准线与y轴的交点为H,P为抛物线C上横坐标为4的点,已知点P到准线的距离为5.
(1)求C的方程;
(2)过C的焦点F作直线l与抛物线C交于A,B两点,若以AH为直径的圆过B,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=,,EF=12 cm,DE=2 cm,A到直线DE和EF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________cm2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左焦点,点在椭圆上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)经过圆:上一动点作椭圆的两条切线,切点分别记为,,直线,分别与圆相交于异于点的,两点.
(i)当直线,的斜率都存在时,记直线,的斜率分别为,.求证:;
(ii)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线(t为参数),曲线,(为参数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.
(1)求曲线,的极坐标方程;
(2)射线分别交,于A,B两点,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com