精英家教网 > 高中数学 > 题目详情

已知,且为实数,则等于(    )

A. 1         B.             C.           D.

 

【答案】

A

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(填空题压轴题:考查函数的性质,字母运算等) 
设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2011型增函数”,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且
d2
d1
=
2
2

(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线l1:x=-
a2
c
、点F(-c,0)、曲线C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,则使等式S22=λS1S3成立的λ的值仍保持不变.请给出你的判断
 
 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下命题:设an1,an2,…anm是公差为d的等差数列{an}中任意m项,若
n1+n2+…+nm
m
=p+
r
m
(p∈N*,r∈N且r<m),则
an1+an2+…+anm
m
=ap+
r
m
d;特别地,当r=0时,称ap为an1,an2,…anm的等差平均项.
(1)已知等差数列{an}的通项公式为an=2n,根据上述命题,则a1,a3,a10,a18的等差平均项为:
 

(2)将上述真命题推广到各项为正实数的等比数列中:设an1,an2,…anm是公比为q的等比数列{an}中任意m项,若
n1+n2+…+nm
m
=p+
r
m
(p∈N*,r∈N且r<m),则
 
;特别地,当r=0时,称ap为an1,an2,…anm的等比平均项.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)为定义域D上单调函数,且存在区间[a,b]⊆D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数,区间[a,b]叫做等域区间.
(1)已知f(x)=x
12
是[0,+∞)上的正函数,求f(x)的等域区间;
(2)试探究是否存在实数m,使得函数g(x)=x2+m是(-∞,0)上的正函数?若存在,请求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)(选修4-4坐标系与参数方程)
已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,则极点到该直线的距离是
2
2
2
2

(2)(选修4-5 不等式选讲)
已知lga+lgb=0,则满足不等式
a
a2+1
+
b
b2+1
≤λ
的实数λ的范围是
[1,+∞)
[1,+∞)

(3)(选修4-1 几何证明选讲)
如图,两个等圆⊙O与⊙O′外切,过O作⊙O′的两条切线OA,OB,A,B是切点,点C在圆O′上且不与点A,B重合,则∠ACB=
60°
60°

查看答案和解析>>

同步练习册答案