A. | $f(x)={x^2},g(x)=\sqrt{x^2}$ | B. | $f(x)=\frac{{{{(\sqrt{x})}^2}}}{x},g(x)=\frac{x}{{{{(\sqrt{x})}^2}}}$ | ||
C. | f(x)=1,g(x)=(x-1)0 | D. | $f(x)=\frac{{{x^2}-9}}{x+3},g(x)=x-3$ |
分析 根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.
解答 解:对于A,f(x)=x2(x∈R),与g(x)=$\sqrt{{x}^{2}}$=|x|(x∈R)的对应关系不同,所以不是同一函数;
对于B,f(x)=$\frac{{(\sqrt{x})}^{2}}{x}$=1(x>0),与g(x)=$\frac{x}{{(\sqrt{x})}^{2}}$=1(x>0)的定义域相同,对应关系也相同,
所以是同一函数;
对于C,f(x)=1(x∈R),与g(x)=(x-1)0=1(x≠1)的定义域不同,所以不是同一函数;
对于D,f(x)=$\frac{{x}^{2}-9}{x+3}$=x-3(x≠-3),与g(x)=x-3(x∈R)的定义域不同,所以不是同一函数.
故选:B.
点评 本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
网络 | 月租费 | 本地话费 | 长途话费 |
甲:联通130 | 12元 | 0.36元/分 | 0.06元/秒 |
乙:移动“神州行” | 无 | 0.60元/分 | 0.07元/秒 |
A. | 300秒 | B. | 400秒 | C. | 500秒 | D. | 600秒 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com