AB为圆O的直径,点E、F在圆上,AB//EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1。
(I)求证:BF⊥平面DAF;
(II)求ABCD与平面CDEF所成锐二面角的某三角函数值;
(III)求多面体ABCDFE的体积。
(I)先证AD⊥平面ABEF,∴AD⊥BF;
由AB为圆O的直径,得AF⊥BF,且AF∩AD=A,可得BF⊥平面DAF;
(II) ;
解析试题分析:(I)证明:因为平面ABCD⊥平面ABEF,AD⊥AB,
∴AD⊥平面ABEF,∴AD⊥BF;
又∵AB为圆O的直径,∴AF⊥BF,
AF∩AD=A,
∴BF⊥平面DAF; 4分
(II)取AB,CD,EF的中点M,P,N(如图所示)
科目:高中数学 来源: 题型:解答题
如图,是半圆的直径,是半圆上除、外的一个动点,平面,,,,.
⑴证明:平面平面;
⑵试探究当在什么位置时三棱锥的体积取得最大值,请说明理由并求出这个最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图:在三棱锥D-ABC中,已知是正三角形,AB平面BCD,,E为BC的中点,F在棱AC上,且
(1)求三棱锥D-ABC的表面积;
(2)求证AC⊥平面DEF;
(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD。
(1)证明:PA⊥BD;(2)设PD=AD,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=.
(1)求直线D1B与平面ABCD所成角的大小;
(2)求证:AC⊥平面BB1D1D.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在矩形ABCD中,AB=4,AD=2,E为AB的中点,现将△ ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCDE,F为线段A′D的中点.
(1)求证:EF//平面A′BC;
(2)求直线A′B与平面A′DE所成角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com