精英家教网 > 高中数学 > 题目详情
已知是圆为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为   
【答案】分析:先根据题意可知|BP|+|PF|正好为圆的半径,而PB|=|PA|,进而可知|AP|+|PF|=2.根据椭圆的定义可知,点P的轨迹为以A,F为焦点的椭圆,根据A,F求得a,c,进而求得b,答案可得.
解答:解:依题意可知|BP|+|PF|=2,|PB|=|PA|
∴|AP|+|PF|=2
根据椭圆的定义可知,点P的轨迹为以A,F为焦点的椭圆,
a=1,c=,则有b=
故点P的轨迹方程为
故答案为
点评:本题主要考查了用定义法求轨迹方程的问题.考查了学生综合分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•聊城一模)已知A,B是单位圆(O为圆心)上的两个定点,且∠AOB=60°,若C为该圆上的动点,且
OC
=x
OA
+y
OB
(x,y∈R)
,则xy的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)如图,已知动圆M过定点F(0,1)且与x轴相切,点F关于圆心M的对称点为F′,动点F′的轨迹为C.
(1)求曲线C的方程;
(2)设A(x0,y0)是曲线C上的一个定点,过点A任意作两条倾斜角互补的直线,分别与曲线C相交于另外两点P、Q.
①证明:直线PQ的斜率为定值;
②记曲线C位于P、Q两点之间的那一段为l.若点B在l上,且点B到直线PQ的距离最大,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆一模)已知一个圆的圆心在x轴的正半轴上,且经过点(0,0),直线
3
x-y=0被该圆截得的弦长为2,则该圆的方程是(  )

查看答案和解析>>

科目:高中数学 来源:江苏模拟题 题型:解答题

平面直角坐标系xOy中,已知以M为圆心的圆M经过F1(0,-c),F2(0,c),A(c,0)三点,其中c>0,
(Ⅰ)求圆M的标准方程(用含c的式子表示);
(Ⅱ)已知椭圆(其中a2-b2=c2)的左、右顶点分别为D,B,圆M与x轴的两个交点分别为A,C,且A点在B点右侧,C点在D点右侧,
①求椭圆离心率的取值范围;
②若A,B,M,O,C,D(O为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.

查看答案和解析>>

同步练习册答案