【题目】已知椭圆C: 的离心率为 ,F是椭圆C的右焦点.过点F且斜率为k(k≠0)的直线l与椭圆C交于A,B两点,O是坐标原点.
(1)求n的值;
(2)若线段AB的垂直平分线在y轴的截距为 ,求k的值;
(3)是否存在点P(t,0),使得PF为∠APB的平分线?若存在,求出t的值;若不存在,说明理由.
【答案】
(1)解:由题意可得e= = ,a=2 ,
即有c=2,b=2,
即有n=4;
(2)解:椭圆的方程为 ,F(2,0),
直线AB的方程为y=k(x﹣2),代入椭圆方程可得
(1+2k2)x2﹣8k2x+8k2﹣8=0,
x1+x2= ,x1x2= ,
AB的中点为( ,k( ﹣2)),
即为( , ),
由题意可得 =﹣ ,解得k=1或 ;
(3)解:假设存在点P(t,0),使得PF为∠APB的平分线,
即有直线PA和PB的斜率之和为0,
即有 + =0,由y1=k(x1﹣2),y2=k(x2﹣2),
即有2x1x2﹣(2+t)(x1+x2)+4t=0,
代入韦达定理,可得 ﹣(2+t) +4t=0,
化简可得t=4.
即有存在点P(4,0),使得PF为∠APB的平分线.
【解析】(1)运用离心率公式和a,b,c的关系,可得n=4;(2)求得椭圆方程,设出直线AB的方程,代入椭圆方程,运用韦达定理和中点坐标公式,再由两直线垂直的条件:斜率之积为﹣1,计算即可得到所求值;(3)假设存在点P(t,0),使得PF为∠APB的平分线,即有直线PA和PB的斜率之和为0,运用韦达定理和斜率公式,化简整理,解方程可得t,即可判断存在.
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,| |=5,20a +15b +12c = , =2 ,则 的值为( )
A.
B.﹣
C.﹣
D.﹣8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为正数,满足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
(1)求证: ;
(2)若{an}是等比数列,求数列{an}的通项公式;
(3)设数列{an}的前n项和为Sn , 求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.
(1)请根据2、3、4、5月的数据,求出y关于x的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考公式: ,)
参考数据:11×25+13×29+12×26+8×16=1092,112+132+122+82=498.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线 : ( )的焦点为 ,点 在抛物线 上,且 ,直线 与抛物线 交于 , 两点, 为坐标原点.
(1)求抛物线 的方程;
(2)求 的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为 ,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用区间表示);
(2)求函数f(x)=2x3﹣3(1+a)x2+6ax在D内的极值点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工艺品厂要设计一个如图1所示的工艺品,现有某种型号的长方形材料如图2所示,其周长为4m,这种材料沿其对角线折叠后就出现图1的情况.如图,ABCD(AB>AD)为长方形的材料,沿AC折叠后AB'交DC于点P,设△ADP的面积为S2 , 折叠后重合部分△ACP的面积为S1 .
(Ⅰ)设AB=xm,用x表示图中DP的长度,并写出x的取值范围;
(Ⅱ)求面积S2最大时,应怎样设计材料的长和宽?
(Ⅲ)求面积(S1+2S2)最大时,应怎样设计材料的长和宽?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com