分析 (1)由不等式|f(x)-2|≤5,可得-7≤2x+1≤7,由此求得它的解集.
(2)由题意可得|2x+1|+|2x-1|+m≠0 恒成立.利用绝对值三角不等式可得|2x+1|+|2x-1|≥2,可得m的范围.
解答 解:(1)由不等式|f(x)-2|≤5,可得-5≤f(x)-2≤5,-3≤f(x)≤7,即|2x+1|≤7,
即-7≤2x+1≤7,即-4≤x≤3,故不等式|f(x)-2|≤5的解集为[-4,3].
(2)由g(x)=$\frac{1}{f(x)+f(x-1)+m}$=$\frac{1}{|2x+1|+|2x-1|+m}$ 的定义域为R,
对任意实数x,有|2x+1|+|2x-1|+m≠0 恒成立.
因为|2x+1|+|2x-1|≥|2x+1-(2x-1)|=2,所以m>-2.
点评 本题主要考查绝对值不等式的解法,绝对值三角不等式,体现了转化的数学思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{10}{9}$ | B. | $\frac{11}{10}$ | C. | $\frac{12}{11}$ | D. | $\frac{13}{12}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com