精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线F1F2是双曲线的左右两个焦点,P在双曲线上且在第一象限,圆M是△F1PF2的内切圆.M的横坐标为_________,若F1到圆M上点的最大距离为,则△F1PF2的面积为___________.

【答案】1

【解析】

利用双曲线的定义以及内切圆的性质,求得的横坐标.F1到圆M上点的最大距离,求得圆的半径,求得直线的方程,由此求得点的坐标,从而求得,进而求得△F1PF2的面积.

双曲线的方程为,则.

设圆分别与相切于

根据双曲线的定义可知,根据内切圆的性质可知①,

. 由①②得:,所以,

所以直线的方程为,即的横坐标为.

的坐标为,则到圆M上点的最大距离为

,解得.

设直线的方程为,即.

到直线的距离为,解得.

所以线的方程为.

在第一象限,解得.

所以.

所以△F1PF2的面积为.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W与时间t的关系为,用的大小评价在这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.


给出下列四个结论:

①在这段时间内,甲企业的污水治理能力比乙企业强;

②在时刻,甲企业的污水治理能力比乙企业强;

③在时刻,甲、乙两企业的污水排放都已达标;

④甲企业在这三段时间中,在的污水治理能力最强.

其中所有正确结论的序号是____________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱锥中,面.

1)若,求证:

2)若,且互余,求直线和面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的最大值;

2)当时,讨论极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线与曲线在公共点处有共同的切线,求实数的值;

(Ⅱ)在(Ⅰ)的条件下,试问函数是否有零点?如果有,求出该零点;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

)当时,判断在定义域上的单调性;

)若上的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在几何体中,如图,四边形为平行四边形,,平面平面平面.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量)数据作了初步处理,得到下面的散点图及一些统计量的值.

46.6

563

6.8

289.8

1.6

1.469

108.8

表中

1)根据散点图判断,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?给出判断即可,不必说明理由

2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;

3)已知这种产品的年利润zxy的关系为根据(2)的结果回答下列问题:

①年宣传费时,年销售量及年利润的预报值是多少?

②年宣传费x为何值时,年利润的预报值最大?

附:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

同步练习册答案