精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,已知椭圆的离心率,且椭圆C上一点到点Q的距离最大值为4,过点的直线交椭圆于点
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当时,求实数的取值范围.
(1);(2)

试题分析:本题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间距离公式等基础知识,考查用代数方法研究圆锥曲线的性质以及数形结合的数学思想方法,考查运算求解能力、综合分析和解决问题的能力.第一问,先利用离心率列出表达式找到的关系,又因为椭圆上的点到点的距离最大值为4,利用两点间距离公式列出表达式,因为在椭圆上,所以,代入表达式,利用配方 法求最大值,从而求出,所以,所以得到椭圆的标准方程;第二问,先设点坐标,由题意设出直线方程,因为直线与椭圆相交,列出方程组,消参韦达定理得到两根之和、两根之积,用坐标表示得出,由于点在椭圆上,得到一个表达式,再由,得到一个表达式,2个表达式联立,得到的取值范围.
试题解析:(Ⅰ)∵         (1分)
则椭圆方程为



时,有最大值为
解得,椭圆方程是       (4分)
(Ⅱ)设方程为
   整理得.
,得.
              (6分)
  则,

由点P在椭圆上,得化简得① (8分)
又由代入得
     化简,得
,   ∴②     (10分)
由①,得
联立②,解得     (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知顶点在原点,焦点在轴上的抛物线过点.
(1)求抛物线的标准方程;
(2)若抛物线与直线交于两点,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆以坐标轴为对称轴,且经过点.记其上顶点为,右顶点为.
(1)求圆心在线段上,且与坐标轴相切于椭圆焦点的圆的方程;
(2)在椭圆位于第一象限的弧上求一点,使的面积最大.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点
(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆,圆,动圆与已知两圆都外切.
(1)求动圆的圆心的轨迹的方程;
(2)直线与点的轨迹交于不同的两点的中垂线与轴交于点,求点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线与直线相切,是抛物线上两个动点,为抛物线的焦点,的垂直平分线轴交于点,且.
(1)求的值;
(2)求点的坐标;
(3)求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线x2=2py(p>0)的焦点作斜率为1的直线与该抛物线交于A,B两点,A,B在x轴上的正射影分别为D,C.若梯形ABCD的面积为12,则P="__________" .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

长为2的线段的两个端点在抛物线上滑动,则线段中点轴距离的最小值是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为双曲线C:的左、右焦点,点P在C上,,则=                   

查看答案和解析>>

同步练习册答案