【题目】“柯西不等式”是由数学家柯西在研究数学分析中的“流数”问题时得到的,但从历史的角度讲,该不等式应当称为柯西﹣﹣布尼亚科夫斯基﹣﹣施瓦茨不等式,因为正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式推广到完善的地步,在高中数学选修教材4﹣5中给出了二维形式的柯西不等式:(a2+b2)(c2+d2)≥(ac+bd)2当且仅当ad=bc(即)时等号成立.该不等式在数学中证明不等式和求函数最值等方面都有广泛的应用.根据柯西不等式可知函数的最大值及取得最大值时x的值分别为( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,,,,且,.
(1)证明:平面;
(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设一个袋子里有红、黄、蓝色小球各一个现每次从袋子里取出一个球(取出某色球的概率均相同),确定颜色后放回,直到连续两次均取出红色球时为止,记此时取出球的次数为ξ,则ξ的数学期望为_____ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】目前,青蒿素作为一线抗疟药品得到大力推广某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中分别种植了株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了株青蒿作为样本,每株提取的青蒿素产量(单位:克)如下表所示:
编号位置 | ① | ② | ③ | ④ |
山上 | ||||
山下 |
(1)根据样本数据,试估计山下试验田青蒿素的总产量;
(2)记山上与山下两块试验田单株青蒿素产量的方差分别为,,根据样本数据,试估计与的大小关系(只需写出结论);
(3)从样本中的山上与山下青蒿中各随机选取株,记这株的产量总和为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AB∥CD,AB⊥AD,PA⊥平面ABCD,E是棱PC上一点.
(1)证明:平面ADE⊥平面PAB.
(2)若PE=4EC,O为点E在平面PAB上的投影,,AB=AP=2CD=2,求四棱锥P-ADEO的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的参数方程为(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系.
(1)将曲线的参数方程化为极坐标方程;
(2)设直线的参数方程为(其中为参数),若与曲线相交于、两点,且,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的最小正周期为,其图象关于直线对称.给出下面四个结论:①将的图象向右平移个单位长度后得到函数图象关于原点对称;②点为图象的一个对称中心;③;④在区间上单调递增.其中正确的结论为( )
A.①②B.②③C.②④D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)设点,直线与曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式,此事引起了国际数学界的轰动许多专家认为这是数论研究中的一项重大突破世界主流媒体都对这项重要成果作了报道并给予了高度评价,印度媒体甚至称赞张益唐为“中国的拉马努金”.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数,使得是素数,素数对称为孪生素数.在不超过20的素数中,随机选取两个不同的数,其中能够组成孪生素数的概率是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com