精英家教网 > 高中数学 > 题目详情
(2012•辽宁模拟)在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,三边a、b、c成等差数列,且B=
π
4
,则cosA-cosC的值为(  )
分析:通过a、b、c成等差数列以及正弦定理得到关系式,利用和差化积,二倍角公式以及三角形的内角和,推出 cos
A-C
2
=2sin
B
2
,求出sin
A-C
2
,利用和差化积化简cosA-cosC,代入B,即可求出结果.
解答:解:由于a,b,c成等差数列,所以有:2b=a+c;
据正弦定理有:a=2RsinA;b=2RsinB;c=2RsinC; 代入2b=a+c,
化简,得:
2sinB=sinA+sinC=2sin
A+C
2
cos
A-C
2
=2sin
π-B
2
cos
A-C
2

=2cos
B
2
cos
A-C
2
=4sin
B
2
cos
B
2

cos
A-C
2
=2sin
B
2

sin
A-C
2
1-4sin2
B
2
1-2(1-cosB)
2cosB-1

cosA-cosC=-2sin
A+C
2
sin
A-C
2
=±2cos
B
2
2cosB-1

2(1+cosB)(2cosB-1)

4cosB-2+4cos2B-2cosB
=
±
2cosB-2+4cos2B

2cos45°-2+4cos245°
=
±
2
-2+2

=±
42

故选D.
点评:本题考查和差化积公式的应用,二倍角以及同角三角函数的基本关系式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•辽宁模拟)已知函数f(x)=ax-1-lnx(a∈R).
(Ⅰ)讨论函数f(x)在定义域内的极值点的个数;
(Ⅱ)已知函数f(x)在x=1处取得极值,且对?x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁模拟)若利用计算机在区间(0,1)上产生两个不等的随机数a和b,则方程x=2
2a
-
2b
x
有不等实数根的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁模拟)选修4-4:坐标系与参数方程
已知极坐标的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,且长度单位相同.直线l的极坐标方程为:ρ=
10
2
sin(θ-
π
4
)
,点P(2cosα,2sinα+2),参数α∈[0,2π].
(Ⅰ)求点P轨迹的直角坐标方程;
(Ⅱ)求点P到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁模拟)选修4-1:几何证明选讲
已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.
(Ⅰ)求证:AC平分∠BAD;
(Ⅱ)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁模拟)设数列{an}的前n项和为Sn,已知数列{Sn}是首项和公比都是3的等比数列,则{an}的通项公式an=
3,(n=1)
2•3n-1.(n≥2)
3,(n=1)
2•3n-1.(n≥2)

查看答案和解析>>

同步练习册答案