精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=mlnx﹣x2+2(m∈R).
(1)当m=1时,求f(x)的单调区间;
(2)若f(x)在x=1时取得极大值,求证:f(x)﹣f′(x)≤4x﹣3;
(3)若m≤8,当x≥1时,恒有f(x)﹣f′(x)≤4x﹣3恒成立,求m的取值范围.

【答案】
(1)解:f(x)的定义域为(0,+∞),

解f′(x)=0,得 .当 时,f′(x)>0,f(x)单调递增;

时,f′(x)<0,f(x)单调递减.

综上,当m=1时,f(x)在 上单调递增,在 上单调递减.


(2)解:若f(x)在x=1时取得极大值,则 ,则m=2.

此时f(x)=2lnx﹣x2+2,

令g(x)=f(x)﹣f′(x)﹣4x+3,

.

令g′(x)=0,得x=±1.列表得

x

(0,1)

1

(1,+∞)

g′(x)

+

0

g(x)

极大值

…(8分)

由上表知,gmax(x)=g(1)=0,所以g(x)≤0,即f(x)﹣f′(x)≤4x﹣3.


(3)解:令

①.

当m≤2时,g′(x)<0,所以g(x)在(1,+∞)上单调递减,所以当x≥1,g(x)≤

g(1),

故只需g(1)≤0,即﹣1﹣2﹣m+5≤0,即m≥2,所以m=2.

②当2<m≤8时,解g′(x)=0,得

时,g′(x)>0,g(x)单调递增;

时,g′(x)<0,g(x)单调递减.

所以当 时,g(x)取得最大值.

故只需 ,即

,则

所以h′(x)在(1,+∞)上单调递增,

又h′(1)=﹣2<0,h′(4)=ln4﹣1>0,以x0∈(1,4),h′(x0)=0,

所以h(x)在(1,x0)上单调递减,

在(x0,4)上递增,而h(1)=﹣1﹣4+5=0,h(4)=4ln4﹣4﹣8+5=8ln2﹣7<0,

所以x∈[1,4]上恒有h(x)≤0,

所以当2<m≤8时,

综上所述,2≤m≤8.


【解析】(1)f(x)的定义域为(0,+∞),求出函数的导数,利用f′(x)=0,求出极值点判断函数的单调性,求出单调区间.(2)利用f(x)在x=1时取得极大值,求出m,令g(x)=f(x)﹣f′(x)﹣4x+3,通过函数的导数,求出函数的最值即可.(3)令 ,求出导函数,通过当m≤2时,g′(x)<0,当2<m≤8时,求出g(x)取得最大值.然后求解2≤m≤8.
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的极值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足 ,其中.

(1)设,求证:数列是等差数列,并求出的通项公式;

(2)设,数列的前项和为,是否存在正整数,使得对于恒成立,若存在,求出的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直四棱柱ABCD—A1B1C1D1中,AA1=2,底面ABCD是直角梯形,∠A为直角,AB∥CD,AB=4,AD=2,DC=2.

(Ⅰ)求线段BC1的长度;

(Ⅱ)异面直线BC1与DC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+(lga+2)x+lgb满足f(﹣1)=﹣2且对于任意xR,恒有f(x)2x成立.

(1)求实数a,b的值;

(2)解不等式f(x)<x+5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD-A1B1C1D1中,M、N分别为棱BC和棱CC1的中点,则异面直线AC和MN所成的角为( )

A. 30° B. 45° C. 90° D. 60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)上为减函数,求的取值范围;

(2)若关于的方程内有唯一解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x),x∈R.

(1)求函数f(x)的最小正周期和单调递减区间;

(2)求函数f(x)在区间[-]上的最小值和最大值,并求出取得最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查甲、乙两种品牌商品的市场认可度,在某购物网点随机选取了14天,统计在某确定时间段的销量,得如下所示的统计图,根据统计图求:

1)甲、乙两种品牌商品销量的中位数分别是多少?

2)甲品牌商品销量在[2050]间的频率是多少?

3)甲、乙两个品牌商品哪个更受欢迎?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的焦点是椭圆的顶点 为椭圆的左焦点且椭圆经过点.

1)求椭圆的方程

2)过椭圆的右顶点作斜率为的直线交椭圆于另一点连结并延长交椭圆于点的面积取得最大值时,求的面积.

查看答案和解析>>

同步练习册答案