精英家教网 > 高中数学 > 题目详情

【题目】选修4—4:坐标系与参数方程

(Ⅰ)若圆x2y2=4在伸缩变换 (λ>0)的作用下变成一个焦点在x轴上,且离心率为的椭圆,求λ的值;

(Ⅱ)在极坐标系中,已知点A(2,0),点P在曲线Cρ上运动,求PA两点间的距离的最小值.

【答案】(1)5, (2)

【解析】试题分析:利用伸缩变换公式化圆的方程变换为椭圆,表示出离心率,列方程解出,利用公式 把曲线的极坐标方程化为直角坐标方程,写出 两点间的距离,把代入求出最值.

试题解析:

(Ⅰ) 圆x2y2=4在伸缩变换 (λ>0)的作用下变成,即,焦点在 轴上, ,所以λ的值为5.

(Ⅱ)曲线C的极坐标方程可化为ρ,即ρρcos θ=2.化为直角坐标方程,得

x=2,即y2=4(x+1).

设点P(xy)(x≥-1),则|PA|=≥2,当且仅当x=0时取等号.

故|PA|min=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数)是定义域为的奇函数.

(1)若,试求不等式的解集;

(2)若,且,求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对甲、乙的学习成绩进行抽样分析,各抽五门功课,得到的观测值如表:

60

80

70

90

70

80

60

70

80

75

问:甲、乙谁的平均成绩较好?谁的各门功课发展较平衡?(
A.甲的平均成绩较好,乙的各门功课发展较平衡
B.甲的平均成绩较好,甲的各门功课发展较平衡
C.乙的平均成绩较好,甲的各门功课发展较平衡
D.乙的平均成绩较好,乙的各门功课发展较平衡

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,将曲线上的所有点横坐标伸长为原来的倍,纵坐标伸长为原来的2倍后,得到曲线,在以为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程是.

(1)写出曲线的参数方程和直线的直角坐标方程;

(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,在正方形ABCD中,点E,F分别是AB,BC的中点.将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于P.

(1)求证:平面PBD⊥平面BFDE;

(2)求二面角P﹣DE﹣F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某乒乓球俱乐部派甲、乙、丙三名运动员参加某运动会的个人单打资格选拔赛,本次选拔赛只有出线和未出线两种情况.若一个运动员出线记分,未出线记分.假设甲、乙、丙出线的概率分别为,他们出线与未出线是相互独立的.

(1)求在这次选拔赛中,这三名运动员至少有一名出线的概率;

(2)记在这次选拔赛中,甲、乙、丙三名运动员所得分之和为随机变量,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex (e为自然对数的底数).
(1)求函数y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈(﹣1,+∞)时,证明:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣ x2+(a﹣1)x+lnx.
(1)若a>﹣1,求函数f(x)的单调区间;
(2)若g(x)= x2+(1﹣2a)x+f(x)有且只有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2+2bx+c(b,c∈R).
(1)若函数y=f(x)的零点为﹣1和1,求实数b,c的值;
(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,求实数b的取值范围.

查看答案和解析>>

同步练习册答案