精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax,g(x)=a2x+m,其中m>0,a>0且a≠1.当x∈[-1,1]时,y=f(x)的最大值与最小值之和为
52

(Ⅰ)求a的值;
(Ⅱ)若a>1,记函数h(x)=g(x)-2mf(x),求当x∈[0,1]时,h(x)的最小值H(m).
分析:(Ⅰ)根据x∈[-1,1]时,y=f(x)的最大值与最小值之和为
5
2
.建立方程关系即可求a的值;
(Ⅱ)求出函数h(x)的表达式,利用换元法求函数的最值.
解答:解:(Ⅰ)∵f(x)在[-1,1]上为单调函数,f(x)的最大值与最小值之和为a+a-1=
5
2

a=2或
1
2

(Ⅱ)h(x)=22x+m-2m•2x
即h(x)=(2x2-2m•2x+m,
令t=2x
∵x∈[0,1]时,
∴t∈[1,2],
h(x)=t2-2mt+m,对称轴为t=m
当0<m<1时,H(m)=h(1)=-m+1;
当1≤m≤2时,H(m)=h(m)=-m2+m;
当m>2时,H(m)=h(2)=-3m+4.

综上所述,H(m)=
-m+1 ,(0<m<1)
-m2+m, (1≤m≤2)
-3m+4,  (m>2)
点评:本题主要考查指数函数的图象和性质,利用换元法将函数转化为二次函数是解决本题的关键,要求熟练掌握指数函数和二次函数的图象和性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案