精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的左、右焦点分别为,过点的动直线与双曲线相交于两点.轴上是否存在定点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.

【答案】存在,

【解析】

假设在轴上存在定点,使为常数,当不与轴垂直时,设出直线的方程,然后与双曲线方程联立消去得到关于的一元二次方程,进而可得到两根之和与两根之积,表示出向量并将所求的两根之和与两根之积代入整理即可求出的坐标;当轴垂直时可直接得到的坐标,再由,可确定答案.

解:由条件知

设点的坐标分别为

假设在轴上存在定点,使为常数,

不与轴垂直时,设直线的方程是

代入,得

是与无关的常数,

,即,此时

轴垂直时,点的坐标可分别设为

此时

故在轴上存在定点,使为常数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】天干地支,简称为干支,源自中国远古时代对天象的观测.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”称为十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”称为十二地支.干支纪年法是天干和地支依次按固定的顺序相互配合组成,以此往复,60年为一个轮回.现从农历2000年至2019年共20个年份中任取2个年份,则这2个年份的天干或地支相同的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读下面一道题目的证明,指出其中的一处错误。题目:平面上有六个点,任何三点都是三边互不相等三角形的顶点,则这些三角形中有一个的最短边又是另一个三角形的最长边。证明:第一步,对已知的六个点作两两连线,可以得出15条边,记为,…,.第二步,由于任何三点组成的都是“三边互不相等的三角形”,因此,15条边互不相等不妨设.第三步,由于“任何三点都是三边互不相等三角形的顶点”,因此,任取三条边都可以组成三角形,则组成的三角形的最长边,也是组成的三角形的最短边,命题得证.这三步中,第______步有错误,理由是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,倾斜角为的直线经过抛物线的焦点,且与抛物线交于两点.

1)求抛物线的焦点的坐标及准线的方程;

2)若为锐角,作线段的垂直平分线轴于点.证明为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点的双曲线的右焦点为,右顶点为.

(1)求双曲线的方程;

(2)若直线与双曲线恒有两个不同的交点,且(其中为坐标原点),求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,直线.

(1)证明:不论取什么数,直线与圆恒交于两点;

(2)求直线被圆截得的线段的最短长度,并求此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:

为真命题,则为真命题;

命题“,有”的否定为“,有”;

“平面向量的夹角为钝角”的充分不必要条件是“”;

在锐角三角形中,必有

为等差数列,若,则

其中正确命题的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平行六面体ABCD—A1B1C1D1中,AB=AC,平面BB1C1C⊥底面ABCD,点M、F分别是线段AA1、BC的中点.

(1)求证:AF⊥DD1

(2)求证:AF∥平面MBC1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:

(2)当时,若不等式恒成立,求实数的取值范围;

(3)若,证明.

查看答案和解析>>

同步练习册答案