精英家教网 > 高中数学 > 题目详情
9.若函数f(x)=x2-bx+5,且x∈(-∞,2)时是减函数,x∈(2,+∞)时是增函数,求f(3)的值.

分析 求出二次函数的对称轴,求得单调区间,由题意可得b=4,进而得到f(3).

解答 解:函数f(x)=x2-bx+5的对称轴为x=$\frac{b}{2}$,
在(-∞,$\frac{b}{2}$)递减,在($\frac{b}{2}$,+∞)递增,
由题意可得$\frac{b}{2}$=2,
即有b=4,
f(x)=x2-4x+5,
即有f(3)=9-12+5=2.

点评 本题考查二次函数的单调性的运用,同时考查二次函数值的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.圆锥的底面半径为2cm,高为4cm,求圆锥的内接圆柱的侧面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)=ax2+bx+c,当-1≤x≤1时,有-1≤f(x)≤1,求证:-2≤x≤2时,有-7≤f(x)≤7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.y=cosx(x∈[0,π])与坐标轴所围成的图形的面积是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某课题研究小组对学生报读文科和理科的人数进行了调查统计,结果如下:
  文科 理科 合计
 男生 5298 150 
 女生 9060 150 
 合计 42158 300 
在探究学生性别与报读文科、理科是否有关时,根据以上数据可以得到K2=19.308,则(  )
A.学生的性别与是否报读文科、理科有关
B.学生的性别与是否报读文科、理科无关
C.在犯错误的概率不超过0.001的前提下认为学生的性别与是否报读文科、理科有关
D.在犯错误的概率不超过0.001的前提下认为学生的性别与是否报读文科、理科无关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=3sin(2x+$\frac{π}{6}$).
(1)求f(0)的值;
(2)求f(x)在区间[-$\frac{π}{2}$,-$\frac{π}{12}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在空间四边形ABCD中,AB=AC,DB=DC,求证:BC⊥AD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆的焦点坐标为F1(-1,0),F2(1,0).且短轴一顶点B横足$\overrightarrow{B{F}_{1}}$•$\overrightarrow{B{F}_{2}}$=2.
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点M,N,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2sin(2ωx+$\frac{π}{6}$)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域;
(3)当x∈[-π,π]时,求f(x)的单调递减区间.

查看答案和解析>>

同步练习册答案