精英家教网 > 高中数学 > 题目详情

【题目】下列说法中正确的是( )

A.若事件与事件是互斥事件,则

B.若事件与事件是对立事件:则

C.某人打靶时连续射击三次,则事件“至少两次中靶”与事件“至多有一次中靶”是对立事件

D.把红橙黄3张纸牌随机分给甲乙丙3人,每人分得1张,则事件“甲分得的不是红牌”与事件“乙分得的不是红牌”是互斥事件

【答案】ABC

【解析】

由对立事件和互斥事件的定义可依次判断各个选项得到结果.

事件与事件互斥,则不可能同时发生,正确;

事件与事件是对立事件,则事件即为事件正确;

事件“至少两次中靶”与“至多一次中靶”不可能同时发生,且二者必发生其一,故为对立事件,正确;

“甲分得的不是红牌”与事件“乙分得的不是红牌”可能同时发生,即“丙分得的是红牌”,故不是互斥事件,错误.

故选:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)已知过原点的动直线与圆 相交于不同的两点

1)求圆的圆心坐标;

2)求线段的中点的轨迹的方程;

3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用列联表,由计算可得,参照下表:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

得到的正确结论是(

A.以上的把握认为爱好该项运动与性别无关

B.以上的把握认为爱好该项运动与性别有关

C.在犯错误的概率不超过的前提下,认为爱好该项运动与性别有关

D.在犯错误的概率不超过的前提下,认为爱好该项运动与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,其中,由中的元素构成两个相应的集合:

其中是有序数对,集合中的元素个数分别为

若对于任意的,总有,则称集合具有性质

)检验集合是否具有性质并对其中具有性质的集合,写出相应的集合

)对任何具有性质的集合,证明

)判断的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知角α的顶点与原点重合,始边与x轴的正半轴重合,终边过点P(-2,-1).

(1)求cos(2α+)的值;

(2)若角β满足tanβ=2,求tan(2α+β)的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[4050),[5060),[6070),[7080),[8090),[90100]

1)求频率分布直方图中a的值并估计这50名使用者问卷评分数据的中位数;

2)从评分在[4060)的问卷者中,随机抽取2人,求此2人评分都在[5060)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义函数如下表,数列满足. ,则( )

A. 7042 B. 7058 C. 7063 D. 7262

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论中正确的个数是

(1)对于命题使得,则都有

(2)已知,则

(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为

(4)“”是“”的充分不必要条件.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 在回归模型中,预报变量的值不能由解释变量唯一确定

B. 若变量满足关系,且变量正相关,则也正相关

C. 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高

D. 以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则

查看答案和解析>>

同步练习册答案