精英家教网 > 高中数学 > 题目详情
以下四个命题中,正确的有几个(   )
①直线a,b与平面a所成角相等,则a∥b;②两直线a∥b,直线a∥平面a,则必有b∥平面a;③ 一直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;④两点A,B与平面a的距离相等,则直线AB∥平面a  
A 0个  B 1个 C 2个     D 3个
A

试题分析:本题考查点线面位置关系①直线a,b与平面a所成角相等,则a∥b或相交或异面三种情况②两直线a∥b,直线a∥平面a,则b∥平面a或;③不正确,必须是平面内的一条直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直; ④两点A,B与平面a的距离相等,则直线AB∥平面a或AB与相交.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,正方体ABCD-A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是,D是AC的中点.
 
(1)求证:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大小;
(3)求直线AB1与平面A1BD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥A—BCC1B1中,等边三角形ABC所在平面与正方形BCC1B1所在平面互相垂直,D为CC1的中点.

(1)求证:BD⊥AB1
(2)求二面角B—AD—B1的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.
(1)求证:BF∥平面ACE;
(2)求证:BF⊥BD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,四棱锥P-ABCD的底面为正方形,侧面PAD为等边三角形,且侧面PAD⊥底面ABCD.点M在底面内运动,且满足MP=MC,则点M在正方形ABCD内的轨迹


A.                 B.                C.               D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若两条异面直线所成的角为,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有(    )
A.12对B.18对C.24对D.30对

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2014·黄冈模拟)设a,b是平面α内两条不同的直线,l是平面α外的一条直线,则“l⊥a,l⊥b”是“l⊥α”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设平面,直线,则“”是“”的(   )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案