精英家教网 > 高中数学 > 题目详情
10、已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2-ax+1>0对?x∈R恒成立.若p且q为假,p或q为真,求a的取值范围.
分析:先解命题,再研究命题的关系,函数y=ax在R上单调递增,由指数函数的单调性解决;等式ax2-ax+1>0对?x∈R恒成立,用函数思想,又因为是对全体实数成立,可用判断式法解决,若p且q为假,p或q为真,两者是一真一假,计算可得答案.
解答:解:∵y=ax在R上单调递增,∴a>1;
又不等式ax2-ax+1>0对?x∈R恒成立,
∴△<0,即a2-4a<0,∴0<a<4,
∴q:0<a<4.
而命题p且q为假,p或q为真,那么p、q中有且只有一个为真,一个为假.
①若p真,q假,则a≥4;
②若p假,q真,则0<a≤1.
所以a的取值范围为(0,1]∪[4,+∞).
点评:本题通过逻辑关系来考查了函数单调性和不等式恒成立问题,这样考查使题目变得丰富多彩,考查面比较广.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,设命题p:函数y=ax在R上单调递减,q:设函数y=
2x-2ax≥2a
2ax<2a
对任意的x,恒有y>1.若p∧q为假,p∨q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,设命题p:函数y=(
1
a
)x
为增函数.命题q:当x∈[
1
2
,2]时函数f(x)=x+
1
x
1
a
恒成立.如果p∨q为真命题,p∧q为假命题,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,设命题p:函数y=ax在R上单调递减,q:不等式x+|x-2a|>1的解集为R,若p和q中有且只有一个命题为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,设命题p:函数y=ax在R上单调增;命题q:不等式ax2-ax+1>0对任意实数x恒成立.若p∧q假,p∨q真,则a的取值范围为
(0,1]∪[4,+∞)
(0,1]∪[4,+∞)

查看答案和解析>>

同步练习册答案