精英家教网 > 高中数学 > 题目详情
已知圆M的圆心M在x轴上,半径为2,直线l:3x-4y+1=0被圆M截得的弦长为2
3
,且圆心M在直线l的上方.
(1)求圆M的方程;
(2)设A(0,t),B(0,t+6)(-4≤t≤-2),若圆M是△ABC的内切圆,求△ABC的面积S的最大值及对应的t值.
考点:圆的标准方程,三角形的面积公式
专题:综合题,直线与圆
分析:(1)设圆心M(a,0),利用M到l:3x-4y+1=0的距离,求出M坐标,然后求圆M的方程;
(2)设AC斜率为k1,BC斜率为k2,推出直线AC、直线BC的方程,求出△ABC的面积S的表达式,求出面积的最大值.
解答: 解:(1)设圆心M(a,0),由已知,得M到l:3x-4y+1=0的距离为
22-(
3
)2
=1,∴
|3a+1|
5
=1,
又∵M在l的上方,∴3a+1<0,∴-3a-1=5,∴a=-2,故圆的方程为(x+2)2+y2=4;
(2)设AC斜率为k1,BC斜率为k2,则直线AC的方程为y=k1x+t,直线BC的方程为y=k2x+t+6.
联立得C点的横坐标为
6
k1-k2

∵|AB|=t+6-t=6,∴S=
1
2
|
6
k1-k2
|×6=|
18
k1-k2
|
由于圆M与AC相切,所以
|-2k1+t|
1+k12
=2,∴k1=
t2-4
4t

同理,k2=
(t+6)2-4
4(t+6)

∴k1-k2=-
3
2
(1+
4
t2+6t
),
∵-4≤t≤-2,∴-9≤t2+6t≤-8,∴-8≤t2+6t+1≤-4,∴
3
4
|k1-k2|≤
5
6

∴Smax=24.
此时t2+6t=-8,t=-2或-4.
点评:本题是中档题,考查直线与圆的位置关系,三角形面积的最值的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log2(ax2+2x+3)
(1)若f(1)=1,求f(x)的单调区间;
(2)若已知函数的值域为R,求a的取值范围;
(3)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Г的方程为
x2
a2
+
y2
b2
=1(a>b>0)点A,B分别为Г上的两个动点,O为坐标原点,且OA⊥OB;其中OA,OB称为椭圆的一条半径.
(1)求证:
1
|OA|2
+
1
|OB|2
=
1
a2
+
1
b2
;|OA|2+|OB|2的最小值为
4a2b2
a2+b2

(2)过点O作OH⊥AB于H,求证:|OH|=
ab
a2+b2
;S△OAB的最小值是
a2b2
a2+b2

(3)将(1)(2)的结论推广至双曲线,结论是否依然成立,若成立,证明你的结论;若不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=logax(a>0,a≠1)满足f[f(a2)]+f(3)=af(1)
(1)求a;
(2)计算f2(2)+f(2)f(3)+f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-3,3]上的奇函数,且f(x)在(0,1]是指数函数,在[1,3]上是二次函数,当1≤x≤3时f(x)≤f(2)=
3
2
,f(3)=
1
2
,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式kx2-2x+6k>0.
(1)若不等式的解集是{x|-3<x<-2},求实数k的值.
(2)若不等式对一切x∈(0,3)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知函数y=log24x图象上的两点A,B和函数y=log2x上的点 C,线段AC平行于y轴,三角形ABC为正三角形时,点B的坐标为(p,q),则实数p的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若2-m与m-3同号,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(2α-β)=-
11
14
,sin(α-2β)=
4
3
7
,0<β<
π
4
<α<
π
2

(1)求cos(3α-3β)
(2)求α+β的大小.

查看答案和解析>>

同步练习册答案