精英家教网 > 高中数学 > 题目详情

【题目】在正三角形中,分别是边上的点,满足(如图1).将沿折起到的位置,使二面角成直二面角,连结(如图2)

)求证:平面

求二面角余弦值.

【答案】取BE的中点D,连结DF∵AEEB=CFFA=12,∴AF=AD=2,而∠A=600,∴△ADF是正三角形,AE=DE=1,∴EF⊥AD在图2中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1-EF-B的平面角∴A1E⊥BE∴A1E⊥平面BEF,即A1E⊥平面BEP(

【解析】

试题不妨设正三角形ABC 的边长为 3 .

(I)在图1中,取BE的中点D,连结DF

∵AEEB=CFFA=12,∴AF=AD=2,而∠A=600,∴△ADF是正三角形,

又AE=DE=1,∴EF⊥AD 2分

在图2中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1-EF-B的平面角

由题设条件知此二面角为直二面角,∴A1E⊥BE

又BE∩EF=E,∴A1E⊥平面BEF,即A1E⊥平面BEP .4分

(II)建立分别以ED、EF、EA为x轴、y轴、z轴的空间直角坐标系则E(0,0,0),A(0,0,1),

B(2,0,0),F(0, ,0), P (1, ,0),则,

设平面ABP的法向量为

平面ABP知,,即

,得

,设平面AFP的法向量为

平面AFP知,,即

,得

,

所以二面角B-A1P-F的余弦值是 13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正方体中,点分别在棱上,且(其中),若平面与线段的交点为,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥DABC中,二面角ABCD的大小为90°,且∠BDC90°,∠ABC30°BC3

1)求证:AC⊥平面BCD

2)二面角BACD45°,且E为线段BC的中点,求直线AE与平面ACD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若处的切线方程为,求的值;

(2)若为区间上的任意实数,且对任意,总有成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 ,长轴的右端点与抛物线 的焦点重合,且椭圆的离心率是

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过作直线交抛物线 两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且经过点

求椭圆的方程;

过点且不与轴重合的直线与椭圆交于不同的两点,过右焦点的直线分别交椭圆于点,设 ,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图像向左平移个单位后得到函数的图像,且函数满足,则下列命题中正确的是()

A. 函数图像的两条相邻对称轴之间的距离为

B. 函数图像关于点对称

C. 函数图像关于直线对称

D. 函数在区间内为单调递减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):

空气质量指数

空气质量等级

1级优

2级良

3级轻度污染

4级中度污染

5级重度污染

6级严重污染

该社团将该校区在2018年11月中10天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.

(1)以这10天的空气质量指数监测数据作为估计2018年11月的空气质量情况,则2018年11月中有多少天的空气质量达到优良?

(2)从这10天的空气质量指数监测数据中,随机抽取三天,求恰好有一天空气质量良的概率;

(3)从这10天的数据中任取三天数据,记表示抽取空气质量良的天数,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极坐标建立极坐标系,圆的极坐标方程为.

的普通方程;

将圆平移,使其圆心为,设是圆上的动点,点关于原点对称,线段的垂直平分线与相交于点,求的轨迹的参数方程.

查看答案和解析>>

同步练习册答案