精英家教网 > 高中数学 > 题目详情

【题目】已知圆:,直线

(1)设点是直线上的一动点,过点作圆的两条切线,切点分别为,求四边形的面积的最小值;

(2)过作直线的垂线交圆点, 关于轴的对称点,若是圆上异于的两个不同点,且满足: ,试证明直线的斜率为定值.

【答案】(1) (2) 见解析

【解析】试题分析:(1) 四边形PAOB为两个对称的直角三角形构成,其中OAOB为圆的半径,其值固定不变,故到当PO最小值,四边形PAOB的面积最小,即圆心到直线的距离最小,利用点到直线的距离公式求出PO的长,利用勾股定理求出此时AP的长,利用三角形的面积公式求出两直角三角形的面积,即为四边形PAOB面积的最小值.

(2) 设直线的斜率为,则 斜率为联立得:

同理从而得到直线的斜率为定值.

试题解析:

1)设四边形的面积为

,所以,当最小时, 就最小,

,所以:

2)直线的方程为: ,代入,且在第一象限,

.设

证法1:

设直线的斜率为,则 斜率为

联立得:

,得

同理

所以,直线的斜率为定值1.

证法2: 的弧长等于的弧长,则

所以:

展开得:

因为在圆上,则满足:

所以整理为: ,即:

,为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面 为棱的中点.

(1)求证:

(2)试判断与平面是否平行?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为点,点在圆上,直线过点且与圆相交于两点,点是线段的中点.

(1)求圆的方程;

(2)若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点M(0,1)的直线l交椭圆C: 于A,B两点,F1为椭圆的左焦点,当△ABF1周长最大时,直线l的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线.

(1)若直线轴上的截距为-2,求实数的值,并写出直线的截距式方程;

(2)若过点且平行于直线的直线的方程为: ,求实数的值,并求出两条平行直线之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M: 和点 ,动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.
(1)求曲线E的方程;
(2)点A是曲线E与x轴正半轴的交点,点B,C在曲线E上,若直线AB,AC的斜率分别是k1 , k2 , 满足k1k2=9,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场经销一批进价为每件30元的商品在市场试销中发现此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:

x

30

40

45

50

y

60

30

15

0

在所给的坐标图纸中,根据表中提供的数据,描出实数对(xy)的对应点,并确定yx的一个函数关系式;

(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点M0-2)、N(3,1),且圆心C在直线x+2y+1=0上.

(1)求圆C的方程;

(2)设直线ax-y+1=0与圆C交于AB两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ x2﹣x+a(a∈R)在其定义域内有两个不同的极值点.
(Ⅰ)求a的取值范围;
(Ⅱ)设两个极值点分别为x1 , x2 , 证明:x1x2>e2

查看答案和解析>>

同步练习册答案