精英家教网 > 高中数学 > 题目详情
已知两点M(-1,0)、N(1,0),动点P(x,y)满足|
MN
|•|
NP
|-
MN
MP
=0,
(1)求点P的轨迹C的方程;
(2)假设P1、P2是轨迹C上的两个不同点,F(1,0),λ∈R,
FP1
FP2
,求证:
1
|FP1|
+
1
|FP2|
=1.
分析:(1)由|
MN
|=2
,知
MP
=(x+1,y),
NP
=(x-1,y)
.由|
MN
|•|
NP
|-
MN
MP
=0
,得2
(x-1)2+y2
-2(x+1)=0
,由此能导出点P的轨迹C的方程.
(2)由
FP1
=λ•
FP2
,得F、P1、P2三点共线,设P1(x1,y1)、P2(x2,y2),直线P1P2的方程为:y=k(x-1),代入y2=4x得:k2x2-2(k2+2)x+k2=0,所以
1
|FP1|
+
1
|FP2|
=
1
x1+1
+
1
x2+1
=
x1+x2+2
x1x2+(x1+x2)+1
=1.
解答:解 (1)|
MN
|=2
;则
MP
=(x+1,y),
NP
=(x-1,y)

|
MN
|•|
NP
|-
MN
MP
=0
,则2
(x-1)2+y2
-2(x+1)=0

化简整理得y2=4x
(2)由
FP1
=λ•
FP2
,得F、P1、P2三点共线,
设P1(x1,y1)、P2(x2,y2),直线P1P2的方程为:y=k(x-1)
代入y2=4x得:k2x2-2(k2+2)x+k2=0则x1•x2=1,x1+x2=
2k2+4
k2

1
|FP1|
+
1
|FP2|
=
1
x1+1
+
1
x2+1
=
x1+x2+2
x1x2+(x1+x2)+1
=1
当P1P2垂直x轴时,结论照样成立.
点评:本题考查点P的轨迹C的方程,求证
1
|FP1|
+
1
|FP2|
=1;解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两点M(-1,0),N(1,0),且点P使
MP
MN
PM
PN
NM
NP
成公差小于零的等差数列.
(1)点P的轨迹是什么曲线?
(2)若点P坐标为(x0,y0),记θ为
PM
PN
的夹角,求tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点M(-1,0),N(1,0)若直线3x-4y+m=0上存在点P满足
PM
PN
=0
,则实数m的取值范围是(  )
A、(-∞,-5]∪[5,+∞)
B、(-∞,-25]∪[25,+∞)
C、[-25,25]
D、[-5,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点M(-1,0),N(1,0)且点P使
MP
MN
PM
PN
NM
NP
成等差数列.
(1)若P点的轨迹曲线为C,求曲线C的方程;
(2)从定点A(2,4)出发向曲线C引两条切线,求两切线方程和切点连线的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广州模拟)已知两点M(-1,0)、N(1,0),点P为坐标平面内的动点,满足|
MN
|•|
NP
|=
MN
MP

(1)求动点P的轨迹方程;
(2)若点A(t,4)是动点P的轨迹上的一点,K(m,0)是x轴上的一动点,试讨论直线AK与圆x2+(y-2)2=4的位置关系.

查看答案和解析>>

同步练习册答案