精英家教网 > 高中数学 > 题目详情

【题目】下列所给4个图象中,与所给3件事吻合最好的顺序为(
·(1)小明离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;
·(2)小明骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;
·(3)小明出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.

A.(4)(1)(2)
B.(4)(2)(3)
C.(4)(1)(3)
D.(1)(2)(4)

【答案】A
【解析】解:(1)离家不久发现自己作业本忘记在家里,回到家里,这时离家的距离为0,故应先选图象(4);(2)骑着车一路以常速行驶,此时为递增的直线,在途中遇到一次交通堵塞,则这段时间与家的距离必为一定值,故应选图象(1);(3)最后加速向学校,其距离随时间的变化关系是越来越快,故应选图象(2).
故答案为:(4)(1)(2),
故选:A.
根据小明所用时间和离开家距离的关系进行判断.根据回家后,离家的距离又变为0,可判断(1)的图象开始后不久又回归为0;
由途中遇到一次交通堵塞,可判断中间有一段函数值没有发生变化;
由为了赶时间开始加速,可判断函数的图象上升速度越来越快.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆为参数和直线 其中为参数, 为直线的倾斜角.

(1)当时,求圆上的点到直线的距离的最小值;

(2)当直线与圆有公共点时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x,g(x)=ax+2(a>0),且对任意的x1∈[﹣1,2],都存在x2∈[﹣1,2],使f(x2)=g(x1),则实数a的取值范围是(
A.[3,+∞)
B.(0,3]
C.[ ,3]
D.(0, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是奇函数,且在(0,+∞)内是增函数,又f(﹣3)=0,则(x﹣1)f(x)<0的解集是(
A.{x|﹣3<x<0或1<x<3}
B.{x|1<x<3}
C.{x|x>3或x<﹣3}
D.{x|x<﹣3或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.
(1)若A∩B=B,求m的取值范围;
(2)若A∩B≠,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内一动点与两定点连线的斜率之积等于.

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)设直线 )与轨迹交于两点,线段的垂直平分线交轴于点,当变化时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程 =1表示双曲线,命题q:x∈(0,+∞),x2﹣mx+4≥0恒成立,若p∨q是真命题,且綈(p∧q)也是真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体的底面是边长为2的正方形, 底面 ,且

(Ⅰ)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.

(Ⅱ)求直线与平面所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求上的最大值和最小值;

(2)设曲线轴正半轴的交点为处的切线方程为,求证:对于任意的正实数,都有.

查看答案和解析>>

同步练习册答案