精英家教网 > 高中数学 > 题目详情
奇函数f(x)在区间(-∞,0)上单调递减,且f(2)=0,则不等式(x-1)f(x+1)>0的解集为(  )
分析:由题意可得 f (2)=0,且在(0,+∞)上单调递减,故当x<-2或0<x<2 时,f(x)>0,当-2<x<0或x>2时,f(x)>0.由此易求得(x-1)•f(x+1)>0的解集.
解答:解:∵函数f(x)是奇函数,在区间(-∞,0)上单调递减,且f (2)=0,
∴f (-2)=-f(2)=0,且在(0,+∞)上单调递减
故当x<-2或0<x<2 时,f(x)>0,当-2<x<0或x>2时,f(x)>0.
由不等式(x-1)•f(x+1)>0可得x-1与f(x+1)同号.
x-1>0
f(x+1)>0
x-1<0
f(x+1)<0

x>1
x+1<-2或0<x+1<2
x-1<0
x+1>2或-2<x+1<0

解不等式可得,-3<x<-1
∴不等式的解集为 (-3,-1)
故选C
点评:本题主要考查函数的单调性和奇偶性的综合应用,体现了转化的数学思想,判断出当x<-2或0<x<2 时,f(x)>0,当-2<x<0或x>2时,f(x)>0,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果奇函数f(x)在区间[1,4]上是增函数且最大值是5,那么f(x)在区间[-4,-1]上是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在[-2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(m)+f(m-1)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在[-2,2]上的奇函数f(x)在区间[-2,0]上单调递减,若f(a)+f(a-1)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在区间(a,b)上是减函数,证明f(x)在区间(-b,-a)上仍是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设奇函数f(x)在区间[-1,1]上是增函数,且f(-1)=-1.当x∈[-1,1]时,函数f(x)≤t2-2at+1,对一切a∈[-1,1]恒成立,则实数t的取值范围为(  )

查看答案和解析>>

同步练习册答案