精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=sin(2x+φ)+2(-π<φ<0),y=f(x)图象的一条对称轴是直线x=$\frac{π}{6}$.
(1)求φ;
(2)求函数y=f(x)的值域.

分析 (1)利用函数的对称轴求出φ即可.
(2)利用正弦函数的值域,求解函数的值域.

解答 解:(1)函数f(x)=sin(2x+φ)+2(-π<φ<0),y=f(x)图象的一条对称轴是直线x=$\frac{π}{6}$.
可得2×$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈Z,∵-π<φ<0,∴φ=$-\frac{5π}{6}$.
(2)函数f(x)=sin(2x$-\frac{5π}{6}$)+2,
因为sin(2x$-\frac{5π}{6}$)∈[-1,1],
所以sin(2x$-\frac{5π}{6}$)+2∈[1,3].

点评 本题考查三角函数的图象与性质,正弦函数的对称性以及函数的有界性的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设f(x)是[-3,3]上的偶函数,且当x∈[0,3)时,f(x)=x2+2x,若f(3)=f(0)
(1)求f(x)的解析式;
(2)解方程f(x)=3;
(3)若不等式f(x)≤a2-2a恒成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.用适当的形式表示下列集合:
(1)由不等式x-3>2的所有解组成的集合是{x|x>5};
(2)由所有小于4的非负奇数所组成的集合是{1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.圆心是(0,2),半径是$\sqrt{3}$,则此圆的方程是x2+(y-2)2=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.方程cosx=-$\frac{x}{6}$的根的个数(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设a,b∈R+,求证:$\frac{a}{1+a}$+$\frac{b}{1+b}$>$\frac{a+b}{1+a+b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若圆柱的轴截面是一个正方形,其面积为4S,则它的一个底面面积是        (  )
A.4SB.4πSC.πSD.2πS

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=log2(4x+1)-x.
(1)求证:函数f(x)是偶函数;
(2)若对任意x∈[1,2],不等式f(x)≤log2($\frac{m}{{2}^{x}}$+3)恒成立,求实数m的最小值;
(3)设函数g(x)=f(x)-log2(a•2x+1-4a)在(2,+∞)上有且只有一个零点,求正实数a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=loga(x2-ax+2)在[2,+∞)恒为正,则实数a的范围是(  )
A.0<a<1B.1<a<2C.1<a<$\frac{5}{2}$D.2<a<3

查看答案和解析>>

同步练习册答案