精英家教网 > 高中数学 > 题目详情

【题目】某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为).

(1)补充完整列联表中的数据,并判断是否有的把握认为甲、乙两套治疗方案对患者白血病复发有影响;

(2)从复发的患者中抽取3人进行分析,求其中接受“乙方案”治疗的人数的数学期望.

附:

,其中

【答案】(1)没有;(2).

【解析】

1)根据题意,补充完整列联表中的数据,计算观测值,对照数表得出结论;(2依题意知的可能取值,计算对应的概率值,写出分布列,求出数学期望值.

(1)

复发

未复发

总计

甲方案

20

30

50

乙方案

2

18

20

总计

22

48

70

由于

所以没有的把握认为甲、乙两套治疗方案对患者白血病复发有影响;

(2)接受“乙方案”治疗的人数.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线,动圆P与圆M相外切,且与直线l相切.设动圆圆心P的轨迹为E.

1)求E的方程;

2)若点ABE上的两个动点,O为坐标原点,且,求证:直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,且函数在其定义域内为增函数,求实数的取值范围;

(2)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点是线段上的动点,则下列说法错误的是( )

A. 当点移动至中点时,直线与平面所成角最大且为

B. 无论点上怎么移动,都有

C. 当点移动至中点时,才有相交于一点,记为点,且

D. 无论点上怎么移动,异面直线所成角都不可能是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面与平面平行的充分条件可以是(

A.内有无穷多条直线都与平行

B.直线,且直线a不在内,也不在

C.直线,直线,且

D.内的任何一条直线都与平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若方程有两个不同的实数根,则实数k的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案①:规定每日底薪50元,快递业务每完成一单提成3元;方案②:规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为七组,整理得到如图所示的频率分布直方图.

(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;

(2)若骑手甲、乙选择了日工资方案①,丙、丁选择了日工资方案②.现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案①的概率;

(3)若从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)当时,解不等式

(2)若函数在区间内恰有一个零点,求的取值范围;

(3)设,当函数的定义域为时,值域为,求ab的值.

查看答案和解析>>

同步练习册答案