已知区间,函数的定义域为
(1)若函数在区间上是增函数,求实数的取值范围
(2)若,求实数的取值范围
(3)若关于的方程在区间内有解,求实数的取值范围
科目:高中数学 来源: 题型:解答题
在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分10分)
已知关于x的方程x2+(m-3)x+m=0
(1)若此方程有实数根,求实数m的取值范围.
(2)若此方程的两实数根之差的绝对值小于,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一变压器的铁芯截面为正十字型,为保证所需的磁通量,要求十字应具有 的面积,问应如何设计十字型宽及长,才能使其外接圆的周长最短,这样可使绕在铁芯上的铜线最节省.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分) 某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率P与每日生产产品件数x(x∈N*)间的关系为P=,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%).
(Ⅰ)将日利润y(元)表示成日产量x(件)的函数;
(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分16分)
如图,开发商欲对边长为的正方形地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路(点分别在上),根据规划要求的周长为.
(1)设,求证:;
(2)欲使的面积最小,试确定点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求证:x1>1>x2;
②若当x≥x1时,关于x的不等式ax2-x+xe+1≤0恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com