精英家教网 > 高中数学 > 题目详情
如图所示,四棱锥P-ABCD中,底面ABCD为平行四边形,且∠DAB=60°,AB=2AD=2,PD⊥底面ABC,则:
(1)证明:PA⊥BD;
(2)若PD=AD,求平面APB与平面CPB夹角的余弦值.
考点:二面角的平面角及求法,直线与平面垂直的性质
专题:空间位置关系与距离,空间角
分析:(Ⅰ)由余弦定理得BD=
3
AD
,从而BD⊥AD,由线面垂直得BD⊥PD,由此能证明PA⊥BD.
(Ⅱ)以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D-xyz,利用向量法能求出二面角A-PB-C的余弦值.
解答: (Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=
3
AD

从而BD2+AD2=AB2,故BD⊥AD,
又PD⊥底面ABCD,
可得BD⊥PD,
所以BD⊥平面PAD,
故PA⊥BD.
(Ⅱ)解:如图,以D为坐标原点,AD的长为单位长,
射线DA为x轴的正半轴建立空间直角坐标系D-xyz,
则A(1,0,0),B(0,
3
,0),C(-1,
3
,0),P(0,0,1),
AB
=(-1,
3
,0),
PB
=(0,
3
,-1),
BC
=(-1,0,0),
设平面PAB的法向量为
n
=(x,y,z),
n
AB
=-x+
3
y=0
n
PB
=
3
y-z=0
,取y=1,得
n
=(
3
,1,
3
),
设平面PBC的法向量为
m
=(a,b,c),则
m
PB
=
3
b-c=0
m
BC
=-a=0

取b=1,得
m
=(0,1,
3
),
∴cos<
n
m
>=
1+3
7
•2
=
2
7
7

∵二面角A-PB-C的平面角是钝角,∴二面角A-PB-C的余弦值为-
2
7
7
点评:本题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a,b,c∈R+,且
1
a
+
1
b
+
2
c
=1
,则a+b+2c的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+
π
3
)
,则下列结论正确的是(  )
A、把f(x)的图象向左平移
π
12
个单位,得到一个偶函数的图象
B、f(x)的图象关于点(
π
4
,0)
对称
C、f(x)的最小正周期为π,且在[0,
π
6
]
上为增函数
D、f(x)的图象关于直线x=-
π
3
对称

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}各项为正,Sn为其前n项和,满足2Sn=3an-3,数列{bn}为等差数列,且b2=2,b10=10,求数列{an+bn}的前n项和Tn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈(0,
π
2
)时,函数h(x)=
1+2sin2x
sin2x
的最小值为b,若定义在R上的函数f(c)满足:对任意的x,y,都有f(x+y)=f(x)+f(y)-b成立,设M、N分别是f(x)在[-b,b]上的最大值与最小值,则M+N的值为(  )
A、
3
B、2
C、2
3
D、4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,抛物线C:y2=2px(p>0)的焦点F(1,0),过点F任作两条弦AC,BD,且
AC
BD
=0,E,G分别为AC、BD的中点
(1)写出抛物线C的方程;
(2)设过点(3,0)的直线EG交抛物线C于M、N两点,试求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
,F2是其右焦点,F1为左焦点也是抛物线y2=-4x的焦点,过F1的直线L与椭圆交于A、B两点,与抛物线交于C、D两点,当直线L与x轴垂直时
|CD|
|AB|
=2
2

(1)求椭圆的方程;
(2)求
F1A
F2B
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

四面体ABCD中,AD=BC,且AD⊥BC,E、F分别是AB、CD的中点,则EF与BC所成的角为(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

候鸟每年都要随季节的变化而进行大规模地迁徒,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为:v=a+blog3
Q
10
(其中a,b是实数),据统计,该种鸟类在静止的时间其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.
(1)求出a,b的值;
(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位.

查看答案和解析>>

同步练习册答案