精英家教网 > 高中数学 > 题目详情

【题目】如图,直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC= ,则异面直线A1C与B1C1所成的角为(
A.30°
B.45°
C.60°
D.90°

【答案】C
【解析】解:因为几何体是棱柱,BC∥B1C1,则直线A1C与BC所成的角为就是异面直线A1C与B1C1所成的角.

直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC= ,BA1= ,CA1=

三角形BCA1是正三角形,异面直线所成角为60°.

故选:C.

【考点精析】关于本题考查的异面直线及其所成的角,需要了解异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是R上的奇函数,且在区间(0,+∞)单调递增,若f(﹣2)=0,则不等式xf(x)<0的解集是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式组 表示的平面区域为M,直线y=kx﹣1与区域M没有公共点,则实数k的最大值为(
A.3
B.0
C.﹣3
D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>0,b>0)上的点P到左、右两焦点F1 , F2的距离之和为2 ,离心率为
(1)求椭圆的方程;
(2)是否存在同时满足①②两个条件的直线l?
①过点M(0, );
②存在椭圆上与右焦点F2共线的两点A、B,且A、B关于直线l对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数p:x2﹣4x﹣12≤0,q:(x﹣m)(x﹣m﹣1)≤0
(1)若m=2,那么p是q的什么条件;
(2)若q是p的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=AA1=2,D、E分别为棱AB、BC的中点,点F在棱AA1上.
(1)证明:直线A1C1∥平面FDE;
(2)若F为棱AA1的中点,求三棱锥A1﹣DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(a﹣ )(a∈R).若关于x的方程ln[(4﹣a)x+2a﹣5]﹣f(x)=0的解集中恰好有一个元素,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S﹣ABC中,E为棱SC的中点,若AC=2 ,SA=SB=AB=BC=SC=2,则异面直线AC与BE所成的角为(

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知E,F分别是棱长为1的正方体ABCD﹣A1B1C1D1的棱BC,CC1的中点,则截面AEFD1与底面ABCD所成二面角的正弦值是

查看答案和解析>>

同步练习册答案