【题目】已知,函数,.
(1)若在上单调递增,求正数的最大值;
(2)若函数在内恰有一个零点,求的取值范围.
【答案】(1)(2)
【解析】
(1)求出的单调递增区间,令,得,可知区间,即可求出正数的最大值;(2)令,当时,,可将问题转化为在的零点问题,分类讨论即可求出答案.
解:(1)由,
得,.
因为在上单调递增,
令,得时单调递增,
所以解得,可得正数的最大值为.
(2),
设,当时,.它的图形如图所示.
又,则,,令,
则函数在内恰有一个零点,可知在内最多一个零点.
①当0为的零点时,显然不成立;
②当为的零点时,由,得,把代入中,
得,解得,,不符合题意.
③当零点在区间时,若,得,此时零点为1,即,由的图象可知不符合题意;
若,即,设的两根分别为,,由,且抛物线的对称轴为,则两根同时为正,要使在内恰有一个零点,则一个根在内,另一个根在内,
所以解得.
综上,的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣1﹣ax(a>1)在[0,a]上的最小值为f(x0),且x0<2,则实数a的取值范围是( )
A.(1,2)
B.(1,e)
C.(2,e)
D.( ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的左、右焦点分别为F1 , F2 , 离心率为 ,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1 , 过点F2作直线PF2的垂线l2 .
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线l1 , l2的交点Q在椭圆E上,求点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知圆:.
⑴若圆的半径为2,圆与 轴相切且与圆外切,求圆的标准方程;
⑵若过原点的直线与圆相交于 两点,且,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的公差,数列满足,集合.
(1)若,,求集合;
(2)若,求使得集合恰有两个元素;
(3)若集合恰有三个元素,,T是不超过5的正整数,求T的所有可能值,并写出与之相应的一个等差数列的通项公式及集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的参数方程是为参数,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(1)写出的极坐标方程和的直角坐标方程;
(2)已知点、的极坐标分别是、,直线与曲线相交于P、Q两点,射线OP与曲线相交于点A,射线OQ与曲线相交于点B,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】解答下列问题:
(1)求平行于直线3x+4y- 2=0,且与它的距离是1的直线方程;
(2)求垂直于直线x+3y -5=0且与点P( -1,0)的距离是的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x﹣1﹣alnx.
(Ⅰ)若 f(x)≥0,求a的值;
(Ⅱ)设m为整数,且对于任意正整数n,(1+ )(1+ )…(1+ )<m,求m的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com