精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.

(1)当a=3时,求A∩B;

(2)若a>0,且A∩B=,求实数a的取值范围.

【答案】(1)A∩B={x|-1≤x≤1或4≤x≤5};(2)0<a<1.

【解析】试题分析:(1)当a=3时,A={x|-1≤x≤5},B={x|x≤1或x≥4},求交集即可;

(2)两个集合交集为空,结合数轴转到端点的关系,求解即可.

试题解析:

(1)∵当a=3时,A={x|-1≤x≤5},B={x|x≤1或x≥4},

∴A∩B={x|-1≤x≤1或4≤x≤5}.

(2)∵A∩B=,又∵A={x|2-a≤x≤2+a}(a>0),B={x|x≤1或x≥4},

∴0<a<1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某医药研究所开发一种新药在试验药效时发现:如果成人按规定剂量服用那么服药后每毫升血液中的含药量y(微克)与时间x(小时)之间满足y=其对应曲线(如图所示)过点.

(1)试求药量峰值(y的最大值)与达峰时间(y取最大值时对应的x值);

(2)如果每毫升血液中含药量不少于1微克时治疗疾病有效那么成人按规定剂量服用该药后一次能维持多长的有效时间(精确到0.01小时)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4x2﹣4ax+a2﹣2a+2在区间[0,2]上有最小值3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若存在x0∈R,使得f(x0)=x0成立,则称x0为f(x)的天宫一号点.已知函数f(x)=ax2+(b-7)x+18的两个天宫一号点分别是-3和2.

(1)求a,b的值及f(x)的表达式;

(2)当函数f(x)的定义域是[t,t+1]时,求函数f(x)的最大值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产的某种时令商品每件成本为元,经过市场调研发现,这种商品在未来天内的日销售量(件)与时间(天)的关系如下表所示.

时间/天

1

3

6

10

36

……

日销售量

/件

94

90

84

76

24

……

未来40天内,前20天每天的价格(元/件)与时间(天)的函数关系式为 ,且为整数),后20天每天的价格(元/件)与时间(天)的函数关系式为,且为整数).

(Ⅰ)认真分析表格中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据(件)与 (天)的关系式;

(Ⅱ)试预测未来 40 天中哪一天的日销售利润最大,最大利润是多少?

(Ⅲ)在实际销售的前 20 天中,该公司决定每销售 1 件商品就捐赠元利润给希望工程. 公司通过销售记录发现,前 20 天中,每天扣除捐赠后的日销售利润随时间(天)的增大而增大,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 为自然对数的底数.

(Ⅰ)若函数存在两个零点,求的取值范围;

(Ⅱ)若对任意 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在处取得极值

(1)求的值;

(2)若对任意的,都有成立,(其中是函数的导函数),求实数的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域为(-3,3),

满足f(-x)=-f(x),且对任意xy,都有f(x)-f(y)=f(xy),当x<0时,f(x)>0,f(1)=-2.

(1)求f(2)的值;

(2)判断f(x)的单调性,并证明;

(3)若函数g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是正方形,侧面底面,且,分别为的中点.

(1)求证:平面

(2)在线段上是否存在点,使得二面角的余弦值为,若存在,请求出点的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案