精英家教网 > 高中数学 > 题目详情
16.经过点P(3,2)且以$\overrightarrow{d}$=(1,-2)为方向向量的直线l的点方向式为$x-3=\frac{y-2}{-2}$.

分析 根据过(m,n)点,以向量$\overrightarrow{a}$=(h,k)为方向向量的直线方程为$\frac{x-m}{h}=\frac{y-n}{k}$,代入可得答案.

解答 解:∵直线l经过点P(3,2)且以$\overrightarrow{d}$=(1,-2)为方向向量,
故直线l的点向式方程为:$\frac{x-3}{1}=\frac{y-2}{-2}$,
即$x-3=\frac{y-2}{-2}$,
故答案为:$x-3=\frac{y-2}{-2}$

点评 本题考查的知识点是直线的点向式方程,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知x,y满足条件:$\left\{\begin{array}{l}7x-5y-23≤0\\ x+7y-11≤0\\ 4x+y+10≥0\end{array}\right.$,求:
(1)4x-3y的最小值;
(2)$\frac{x-y+1}{x+5}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}的首项为a1=1,且满足对任意的n∈N*,都有an+1-an≤2n,an+2-an≥3×2n成立,则a2015=(  )
A.22006-1B.22006+1C.22015+1D.22015-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知b≤2,设命题p:函数f(x)=$\frac{bx+|a|}{x+1}$在(0,+∞)上是增函数:命题q:对?x>0,x2-(b-|a|+1)x+1≥0恒成立.若满足p∧q为真命题的实数对为(a,b),求以实数对(a,b)为坐标的点所表示的平面区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数$f(x)={x^2}-2x-3,g(x)=\frac{1}{{\sqrt{3+2x-{x^2}}}}$,则f(x)•g(x)=-$\sqrt{3+2x-{x}^{2}}$,x∈(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.循环小数0.2$\stackrel{••}{34}$化为最简分数$\frac{a}{b}$,则a+b=51712..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.记号[x]表示不大于x的最大整数,数列{an}的通项an=$\frac{1}{\sqrt{n}}$(n∈N*),Sn为{an}的前n项和,则[S2500]=98.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.二次函数y=3x2+2(m-1)x+n在区间(-∞,1)上是减函数,在区间[1,+∞)上是增函数,则实数m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U={1,2,3,4},集合A={1,2},B={2},则∁U(A∪B)=(  )
A.{1,3,4}B.{3,4}C.{3}D.{4}

查看答案和解析>>

同步练习册答案