精英家教网 > 高中数学 > 题目详情
已知凼数f(x)=2cos2x-2sinxcosx+1
(1)求方程f(x)-1=0在x∈(0,π)内的所有解的和;
(2)把凼数y=f(x)的图象向左平移m(m>0)个单位,使所得函数的图象关于点(0,2)对称,求m的最小值.
考点:两角和与差的正弦函数,函数y=Asin(ωx+φ)的图象变换
专题:计算题,三角函数的求值,三角函数的图像与性质
分析:(1)利用二倍角公式对函数f(x)的解析式化简整理,根据f(x)-1=0,求得cos(2x+
π
4
)=-
2
2
,进而求得x,则可得在x∈(0,π)内的所有解,进而求得之和.
(2)设y=f(x)的图象向左平移m个单位,得到函数g(x)的图象,则可知g(x)的解析式,根据函数的图象关于(0,2)对称,进而求得m的集合,进而求得m的最小值.
解答: 解:(1)由题设得f(x)=-sin2x+1+cos2x+1=
2
cos(2x+
π
4
)+2,
∵f(x)-1=0,
2
cos(2x+
π
4
)+2=1,
∴cos(2x+
π
4
)=-
2
2

由2x+
π
4
=2kπ+
4
或2kπ+
5
4
π,k∈Z.得x=kπ+
π
4
或kπ+
π
2

∵x∈(0,π)
∴x1=
π
4
,x2=
π
2

∴x1+x2=
4

(2)设y=f(x)的图象向左平移m个单位,得到函数g(x)的图象,
则g(x)=cos(2x+
π
4
+2m)+2,
∵y=g(x)的图象关于点(0,2)对称,
∴2m+
π
4
=kπ+
π
2
,k∈Z,
∴2m=kπ+
π
4
,m=
2
+
π
8
,k∈Z,
∵m>0,∴当k=0时,m取得最小值
π
8
点评:本题主要考查了二倍角公式,三角函数图象的平移,及对称性.考查了学生综合把握三角函数知识的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等比数列,a1=1 a3=2,则a2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-1)2=2经过椭圆Γ:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点F和上顶点B,则椭圆Γ的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=2x2+(x-a)|x-a|.
(Ⅰ)若f(1)≥3,求a的取值范围;
(Ⅱ)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

平行四边形ABCD中,∠CBA=120°,AD=4,对角线BD=2
3
,将其沿对角线折起,使面ABD⊥面BCD,若四面体ABCD定点在同一个球面上,则该球的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x|>3的解集为(  )
A、{x|x>3}
B、{x|x>±3}
C、{x|-3<x<3}
D、{x|x<-3或x>3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足x2+y2+xy=1,则x+2y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ln(x+1)•tanx的图象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂欲加工一件艺术品,需要用到三棱锥形状的坯材,工人将如图所示的长方体ABCDEFGH材料切割成三棱锥HACF.

(1)若点M,N,K分别是棱HA,HC,HF的中点,点G是NK上的任意一点,求证:MG∥平面ACF;
(2)已知原长方体材料中,AB=2m,AD=3m,DH=1m,根据艺术品加工需要,工程师必须求出该三棱锥的高.工程师设计了一个求三棱锥的高度的程序,其框图如图所示,则运行该程序时乙工程师应输入的t的值是多少?

查看答案和解析>>

同步练习册答案