【题目】若函数在定义域A上的值域为,则区间A不可能为( )
A.B.C.D.
【答案】D
【解析】
根据函数图象得到函数在R上的单调性是先减后增,再根据单调性分别求出选项中四个区间上的最大最小值,得到相应的值域,再与[﹣3,1]比较,即可得到正确选项.
∵函数f(x)=x2﹣4x+1的图象是开口向上的抛物线,以x=2为对称轴,
∴函数在区间(﹣∞,2)上为减函数,[2,+∞)上为增函数.
当x∈[0,4]时,函数最小值为f(2)=﹣3,最大值为f(0)=f(4)=1,得函数值域为[﹣3,1];
当x∈[2,4]时,函数最小值为f(2)=﹣3,最大值为f(4)=1,得函数值域为[﹣3,1];
当x∈[1,4]时,函数最小值为f(2)=﹣3,
∵f(1)=﹣2<f(4)=1,∴最大值为f(4)=1,得函数值域为[﹣3,1];
当x∈[﹣3,5]时,最小值f(2)=﹣3,最大值为f(﹣3)=22,得函数值域为[﹣2,22].
根据以上的讨论可得区间A不可能为[﹣3,5].
故选:D.
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.
(1)若a=-2,求函数f(x)的解析式;
(2)若函数f(x)为R上的单调减函数,
①求a的取值范围;
②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=,∠BAD=90°.
(Ⅰ)求证:AD⊥BC;
(Ⅱ)求异面直线BC与MD所成角的余弦值;
(Ⅲ)求直线CD与平面ABD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列说法:
①命题“x0∈R,x+1>3x0”的否定是“x∈R,x2+1<3x”;
②已知p,q为两个命题,若“p∨q”为假命题,则“¬p∧¬q”为真命题
③“a>2”是“a>5”的充分不必要条件
④“若xy=0,则x=0且y=0”的逆否命题为真命题
其中正确说法的个数为( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,如果存在给定的实数对,使得恒成立,则称为“函数”.
(1)判断函数,是否是“函数”;
(2)若是一个“函数”,求出所有满足条件的有序实数对;
(3)若定义域为的函数是“-函数”,且存在满足条件的有序实数对和,当时,的值域为,求当时函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=b·ax(其中a,b为常量,且a>0,a≠1)的图象经过点A(1,6),B(3,24).
(1)求f(x);
(2)若不等式()x+()x-m≥0在x∈(-∞,1]时恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,从一个面积为的半圆形铁皮上截取两个高度均为的矩形,并将截得的两块矩形铁皮分别以,为母线卷成两个高均为的圆柱(无底面,连接部分材料损失忽略不计).记这两个圆柱的体积之和为.
(1)将表示成的函数关系式,并写出的取值范围;
(2)求两个圆柱体积之和的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com