精英家教网 > 高中数学 > 题目详情

【题目】已知,函数

1)若上单调递增,则的取值范围为______________

2)若对于任意实数,方程有且只有一个实数根,且,函数的图象与函数的图象有三个不同的交点,则的取值范围为______________.

【答案】

【解析】

1)首先根据题意列出不等式组,解不等式组即可.

2)首先根据已知条件得到,画出函数的图象,利用数形结合的思想即可得到的取值范围.

1)由题知:,解得.

2)因为对于任意实数,方程有且只有一个实数根,且

所以,解得.

所以

函数的图象如图所示:

,解得,即.

当函数点时,

此时函数有两个交点.

联立

,即时,

此时函数有两个交点.

因为函数的图象与函数的图象有三个不同的交点,

所以.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点在椭圆 上, 是椭圆的一个焦点.

)求椭圆的方程;

)椭圆C上不与点重合的两点 关于原点O对称,直线 分别交轴于 两点.求证:以为直径的圆被直线截得的弦长是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线l过抛物线的焦点F且交抛物线于AB两点,直线l与圆交于CD两点,若,设直线l的斜率为k,则________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

,曲线

过点

,且在点

处的切线方程为

.

(1)求

的值;

(2)证明:当

时,

(3)若当

时,

恒成立,求实数

的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为4的菱形,∠BAD=60°,对角线ACBD相交于点O,四边形ACFE为梯形,EF//AC,点E在平面ABCD上的射影为OA的中点,AE与平面ABCD所成角为45°.

(Ⅰ)求证:BD⊥平面ACF

(Ⅱ)求平面DEF与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,为坐标平面内动点,且成等差数列.

1)求动点的轨迹方程;

2)设点的轨迹为曲线,过点作直线交两点(不与原点重合),是否存在轴上一定点,使得_________.若存在,求出定点,若不存在,说明理由.从“①作点关于轴的对称点,则三点共线;②”这两个条件中选一个,补充在上面的问题中并作答(注:如果选择两个条件分别作答,按第一个解答计分)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥PABC中,平面PBC⊥平面ABC,∠ACB90°BCPC2,若ACPB,则三棱锥PABC体积的最大值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.命题,则的否命题为:,则

B.命题存在,使得的否定是:对任意,均有

C.命题的终边在第一象限角,则是锐角的逆否命题为真命题

D.已知上的可导函数,则是函数的极值点的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长等于2正方形中,点Q中点,点M,N分别在线段上移动(M不与A,B重合,N不与C,D重合),且,沿着将四边形折起,使得二面角为直二面角,则三棱锥体积的最大值为________;当三棱锥体积最大时,其外接球的表面积为________

查看答案和解析>>

同步练习册答案