【题目】已知,函数
(1)若在上单调递增,则的取值范围为______________;
(2)若对于任意实数,方程有且只有一个实数根,且,函数的图象与函数的图象有三个不同的交点,则的取值范围为______________.
科目:高中数学 来源: 题型:
【题目】已知点在椭圆: 上, 是椭圆的一个焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)椭圆C上不与点重合的两点, 关于原点O对称,直线, 分别交轴于, 两点.求证:以为直径的圆被直线截得的弦长是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是边长为4的菱形,∠BAD=60°,对角线AC与BD相交于点O,四边形ACFE为梯形,EF//AC,点E在平面ABCD上的射影为OA的中点,AE与平面ABCD所成角为45°.
(Ⅰ)求证:BD⊥平面ACF;
(Ⅱ)求平面DEF与平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,为坐标平面内动点,且成等差数列.
(1)求动点的轨迹方程;
(2)设点的轨迹为曲线,过点作直线交于两点(不与原点重合),是否存在轴上一定点,使得_________.若存在,求出定点,若不存在,说明理由.从“①作点关于轴的对称点,则三点共线;②”这两个条件中选一个,补充在上面的问题中并作答(注:如果选择两个条件分别作答,按第一个解答计分)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥P﹣ABC中,平面PBC⊥平面ABC,∠ACB=90°,BC=PC=2,若AC=PB,则三棱锥P﹣ABC体积的最大值为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.命题“若,则”的否命题为:“若,则”
B.命题“存在,使得”的否定是:“对任意,均有”
C.命题“角的终边在第一象限角,则是锐角”的逆否命题为真命题
D.已知是上的可导函数,则“”是“是函数的极值点”的必要不充分条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在边长等于2正方形中,点Q是中点,点M,N分别在线段上移动(M不与A,B重合,N不与C,D重合),且,沿着将四边形折起,使得二面角为直二面角,则三棱锥体积的最大值为________;当三棱锥体积最大时,其外接球的表面积为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com