【题目】下图是某校某班44名同学的某次考试的物理成绩y和数学成绩x的散点图:
根据散点图可以看出y与x之间有线性相关关系,但图中有两个异常点A,B.经调查得知,A考生由于重感冒导致物理考试发挥失常,B生因故未能参加物理考试.为了使分析结果更科学准确,剔除这两组数据后,对剩下的数据作处理,得到一些统计量的值:
,,,,,其中,分别表示这42名同学的数学成绩、物理成绩,.y与x的相关系数.
(1)若不剔除A、B两名考生的数据,用44数据作回归分析,设此时y与x的相关系数为,试判断与r的大小关系,并说明理由;
(2)求y关于x的线性回归方程(系数精确到),并估计如果B考生参加了这次物理考试(已知B考生的数学成绩为125分),物理成绩是多少?(精确到个位).
附:回归方程中,.
【答案】(1);理由见解析;(2);81分
【解析】
(1)结合散点图,可得出结论;
(2)利用题中给的相关系数,最小二乘法写出回归直线方程,再令x=125,即可算出答案;
(1).
理由如下:由图可知,y与x成正相关关系,
①异常点 A,B 会降低变量之间的线性相关程度.
②44个数据点与其回归直线的总偏差更大,回归效果更差,所以相关系数更小.
③42个数据点与其回归直线的总偏差更小,回归效果更好,所以相关系数更大.
④42个数据点更贴近其回归直线l.
⑤44个数据点与其回归直线更离散.
(以上理由写出任一个或其它言之有理均可得分)
(2)由题中数据可得:,,
所以,
,
所以,
将代入,得,
所以估计B同学的物理成绩约为81分.
科目:高中数学 来源: 题型:
【题目】已知原点到动直线的距离为2,点到,的距离分别与到直线的距离相等.
(1)证明为定值,并求点的轨迹方程;
(2)是否存在过点的直线,与点的轨迹交于两点,为线段的中点,且?若存在,请求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )
A. 消耗1升汽油,乙车最多可行驶5千米
B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的焦点为,直线与抛物线交于两点.
(1)若过点,且,求的斜率;
(2)若,且的斜率为,当时,求在轴上的截距的取值范围(用表示),并证明的平分线始终与轴平行.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代有辉煌的数学研究成果,其中《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》,《缉古算经》均有着十分丰富的内容,是了解我国古代数学的重要文献,某中学计划将这本专著作为高中阶段“数学文化”样本课程选修内容,要求每学年至少选一科,三学年必须将门选完,则小南同学的不同选修方式有______种.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的首项,其前项和为,设.
(1)若,,且数列是公差为的等差数列,求;
(2)设数列的前项和为,满足.
①求数列的通项公式;
②若对,且,不等式恒成立,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com