精英家教网 > 高中数学 > 题目详情
设a、b、c分别为△ABC的三内角A、B、C所对的边,则a2=b(b+c)是A=2B的(  )
A、充要条件B、充分而不必要条件C、必要而不充分条件D、既不充分也不必要条件
分析:先假设a2=b(b+c)成立,通过正弦定理和二倍角公式可证A=2B成立,所以是充分条件;
若A=2B同样通过正弦定理和二倍角公式可证a2=b(b+c)成立,故必要,所以是充要条件.
解答:解:设a,b,c分别是△ABC的三个内角A,B,C所对的边,若a2=b(b+c),
则sin2A=sinB(sinB+sinC),
1-cos2a
2
=
1-cos2B
2
+sinBsinC

1
2
(cos2B-cos2A)=sinBsinC
,sin(B+A)sin(A-B)=sinBsinC,
又sin(A+B)=sinC,
∴sin(A-B)=sinB,
∴A-B=B,A=2B,
若△ABC中,A=2B,由上可知,每一步都可以逆推回去,
得到a2=b(b+c),
所以a2=b(b+c)是A=2B的充要条件,
故选A.
点评:本题主要考查充分、必要条件的判定和正弦定理、二倍角公式的应用.这里一定要熟练掌握三角函数的所有公式才能做到游刃有余.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中有如下结论:“若点M为△ABC的重心,则
MA
+
MB
+
MC
=
0
设a,b,c分别为△ABC的内角A,B,C的对边,点M为△ABC的重心.如a
MA
+b
MB
+
3
3
c
MC
=
0
,则内角A的大小为
 
;若a=3,则△ABC的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,设a、b、c分别为角A、B、C的对边,角A的平分线AD交BC边于D,A=60°.
(1)求证:AD=
3
bc
b+c

(2)若
BD
=2
DC
AD=4
3
,求其三边a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河东区一模)在△ABC中,设a、b、c分别为角A、B、C的对边,S为△ABC的面积,且满足条件4sinB•sin2
π
4
+
B
2
)+cos2B=1+
3

(Ⅰ)求∠B的度数;
(Ⅱ)若a=4,S=5
3
,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)给出下列命题:
①设向量
e1
e2
满足|
e1
|=2,|
e2
|=1,
e1
e2
的夹角为
π
3
.若向量2t
e1
+7
e2
e1
+t
e2
的夹角为钝角,则实数t的取值范围是(-7,-
1
2
);
②已知一组正数x1,x2,x3,x4的方差为s2=
1
4
(x12+x22+x32+x42)-4,则x1+1,x2+1,x3+1,x4+1的平均数为1
③设a,b,c分别为△ABC的角A,B,C的对边,则方程x2+2ax+b2=o与x2+2cx-b2=0有公共根的充要条件是A=90°;
④若f(n)表示n2+1(n∈N)的各位上的数字之和,如112+1=122,1+2+2=5,所以f(n)=5,记f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,则f20(5)=11.
上面命题中,假命题的序号是
 (写出所有假命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)给出下列命题:
①已知
i
j
为互相垂直的单位向量,
a
=
i
-2
j
b
=
i
j
,且
a
b
的夹角为锐角,则实数λ的取值范围是(-∞,
1
2
);
②若某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是
?
y
=10x+200;
③若x1,x2,x3,x4的方差为3,则3(x1-1),3(x2-1),3(x3-1)),3(x4-1)的方差为27;
④设a,b,C分别为△ABC的角A,B,C的对边,则方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是A=90°.
上面命题中,假命题的序号是
①②
①②
(写出所有假命题的序号).

查看答案和解析>>

同步练习册答案