精英家教网 > 高中数学 > 题目详情
19.方程x3-2=0的根所在的区间是(  )
A.(-2,0)B.(0,1)C.(1,2)D.(2,3)

分析 解方程得x=$\root{3}{2}$,利用幂函数的单调性判断出答案.

解答 解:∵x3-2=0,∴x3=2,故x=$\root{3}{2}$,
∵y=$\root{3}{x}$是增函数,
∴$\root{3}{1}$<$\root{3}{2}$<$\root{3}{8}$,即1<$\root{3}{2}$<2.
故选:C.

点评 本题考查了利用函数单调性对无理数的大小估值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知a∈R,函数f(x)=$\frac{1}{3}{x}^{3}-\frac{1}{2}(a+1){x}^{2}+ax$.
(1)求函数f(x)的单调区间;
(2)若a>1,函数y=f(x)在[0,a+1]上最大值是f(a+1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.与函数y=10lg(x-1)相等的函数是③(填序号).
①y=x-1;②y=|x-1|;③$y={(\frac{x-1}{{\sqrt{x-1}}})^2}$;④$y=\frac{{{x^2}-1}}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=x2-ax+a+3,g(x)=x-a.
(1)若不存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,求实数a的取值范围;
(2)设h(x)=f(x)+2x|x-a|+ax-a-3,若不等式4≤h(x)≤16在x∈[1,2]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设f(x)是奇函数,且在(0,+∞)内是减函数,又f(-3)=0,则(x2-2x-3)•f(x)≥0的解集是(  )
A.{x|-1≤x≤3或x≤-3}B.{x|-1≤x≤0或x≤-3或x=3}
C.{x|-3≤x≤-1或x≥3}D.{x|-1≤x≤0或x≥3或x=-3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,内角A,B,C对应的边分别为a,b,c,若(a2+b2-c2)tanC=ab,则角C等于(  )
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.宜宾三中举行的电脑知识竞赛中,将高二年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、三、四、五小组的频率分别是0.30,0.15,0.10,0.05.则第二小组的小长方形的高为(  )
A.0.04B.0.40C.0.10D.0.025

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对一切实数x,函数f(x)满足:xf(x)=2f(1-x)+1,则f(5)=$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=log${\;}_{\frac{1}{2}}$x在[2,4]上的最大值与最小值的差为1.

查看答案和解析>>

同步练习册答案