【题目】如图,矩形中,,为边的中点.将沿直线翻折成(点不落在底面内).若为线段的中点,则在翻转过程中,以下命题正确的是( )
A.四棱锥体积最大值为
B.线段长度是定值;
C.平面一定成立;
D.存在某个位置,使;
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.
(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;
(Ⅱ)设直线与曲线C交于P,Q两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的离心率为,长轴的左、右端点分别为,.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于P,Q两点,直线,交于S,试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD的底面ABCD为正方形,,E,F分别是棱PC,AB的中点.
(1)求证:平面PAD;
(2)若,求直线EF与平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的一个焦点为,点在上.
(1)求椭圆的方程;
(2)若直线:与椭圆相交于,两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的左、右焦点分别为,,过点的直线与椭圆交于点,,的周长为.
(1)求椭圆的标准方程;
(2)若.①当时,求直线的方程;
②证明是定值,并求出此定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com