精英家教网 > 高中数学 > 题目详情
在梯形中ABCD,AB∥CD,AB=2CD,M,N分别是CD,AB的中点,设
AB
=
e1
AD
=
e2

(1)在图上作出向量
1
2
e1
+
e2
(不要求写出作法)
(2)请将
MN
e1
e2
表示.
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:(1)如图所示,连接NC,在四边形ANCD中,由AB∥CD,AB=2CD,N是AB的中点,可得AN=CD,四边形ANCD是平行四边形,可得
AC
=
AN
+
AD
=
1
2
AB
+
AD

(2)由M,N分别是CD,AB的中点,可得
MD
=
1
2
CD
=-
1
4
AB
AN
=
1
2
AB
,代入
MN
=
MD
+
DA
+
AN
即可得出.
解答: 解:(1)如图所示,连接NC,在四边形ANCD中,
∵AB∥CD,AB=2CD,N是AB的中点,
∴AN=CD,
∴四边形ANCD是平行四边形,
AC
=
AN
+
AD
=
1
2
AB
+
AD
=
1
2
e1
+
e2

(2)∵M,N分别是CD,AB的中点,
MD
=
1
2
CD
=-
1
4
AB

AN
=
1
2
AB

MN
=
MD
+
DA
+
AN

=
1
4
AB
-
AD

=
1
4
e1
-
e2
点评:本题考查了向量的多边形法则、平行四边形的判定与性质、向量共线定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线x2-2y2=4的右焦点到渐近线的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,右焦点到直线y=x的距离为
3

(Ⅰ)求椭圆E的方程;
(Ⅱ)已知点M(2,1),斜率为
1
2
的直线l交椭圆E于两个不同点A,B,设直线MA与MB的斜率分别为k1,k2
①若直线l过椭圆的左顶点,求k1,k2的值;    
②试猜测k1,k2的关系,并给出你的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)对任意x∈R,恒有(f(x)-sinx)(f(x)-cosx)=0成立,则下列关于函数 y=f(x)的说法正确的是(  )
A、最小正周期是2π
B、值域是[-1,1]
C、是奇函数或是偶函数
D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

盒中装着标有1,2,3,4,的蓝色卡片4张,标有1,2,3,4的红色卡片4张,现从盒中任意抽取3张,每张卡片被抽出的可能性相等,设取到一张红色卡片记2分,取到一张蓝色卡片记1分,以X表示抽出的3张卡片的总得分,Y表示抽出的3张卡片上最大的数字,求X和Y的概率分布.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中,O为AC的中点,设E是棱DD1上的点,且
DE
=
2
3
DD1
,若
EO
=x
AB
+y
AD
+z
AA1
,则x+y+z的值为(  )
A、
5
6
B、-
5
6
C、-
2
3
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx+acos2x的图象经过点(0,2)
(1)求函数f(x)的单调递减区间;
(2)当x∈[-
π
6
π
4
]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
x-4
x+4
的反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△OAB中,P为线段AB上的一点,
OP
=x
OA
+y
OB
,且
BP
=2
PA
,则x=
 
,y=
 

查看答案和解析>>

同步练习册答案