精英家教网 > 高中数学 > 题目详情

【题目】(题文)已知抛物线和圆的公共弦过抛物线的焦点,且弦长为4.

(1)求抛物线和圆的方程;

(2)过点的直线与抛物线相交于两点抛物线在点处的切线与轴的交点为,求面积的最小值.

【答案】(1);(2)

【解析】

试题分析:(1)由题意可知,求得的值,得到抛物线的方程,进而求得圆的方程.

(2)设直线的方程为:,联立方程组,求的,利用导数求得切线方程,得到,利用点到直线的距离公式,求的距离,表示出面积的表达式,利用导数,研究函数的单调性和最值,即可得到结论.

试题解析:

(1)由题意可知,,所以,故抛物线的方程为.

,所以所以圆的方程为.

(2)设直线的方程为:,并设

联立,消可得,.

所以

.

,所以过点的切线的斜率为,切线为

,可得,所以点到直线的距离

,代入上式并整理可得:

,令,可得为偶函数,

时,

,令,可得

,当

所以时,取得最小值,故的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一袋中有大小相同的4个红球和2个白球,给出下列结论:

①从中任取3球,恰有一个白球的概率是

②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为

③现从中不放回的取球2次,每次任取1球,则在第一次取到红球的条件下,第二次再次取到红球的概率为

④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.

其中所有正确结论的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将4名志愿者分别安排到火车站、轮渡码头、机场工作,要求每一个地方至少安排一名志愿者,其中甲、乙两名志愿者不安排在同一个地方工作,则不同的安排方法共有

A. 24种B. 30种C. 32种D. 36种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某野生动物保护区内某种野生动物的数量,调查人员某天逮到这种动物1200只作好标记后放回,经过一星期后,又逮到这种动物1000只,其中作过标记的有100只,按概率的方法估算,保护区内有多少只该种动物.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数的定义域为[-1,1],当时,

(1)求函数上的值域;

(2)若时,函数的最小值为-2,求实数λ的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且,记.

(1)求数列的通项公式;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为建设美丽乡村,政府欲将一块长12百米,宽5百米的矩形空地ABCD建成生态休闲园,园区内有一景观湖EFG(图中阴影部分).以AB所在直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系xOy(如图所示).景观湖的边界曲线符合函数模型.园区服务中心P在x轴正半轴上,PO=百米.

(1)若在点O和景观湖边界曲线上一点M之间修建一条休闲长廊OM,求OM的最短长度;

(2)若在线段DE上设置一园区出口Q,试确定Q的位置,使通道直线段PQ最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间和极值;

(2)若对于任意,都有成立,求实数的取值范围;

(3)若,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:

每周移动支付次数

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合计

15

12

13

7

8

45

(1)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,按分层抽样的方法,在我市所有“移动支付达人”中,随机抽取6名用户

求抽取的6名用户中男女用户各多少人;

从这6名用户中抽取2人,求既有男“移动支付达人”又有女“移动支付达人”的概率.

(2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,填写下表,问能否在犯错误概率不超过0.01的前提下,认为“移动支付活跃用户”与性别有关?

P(χ2k)

0.100

0.050

0.010

k

2.706

3.841

.635

非移动支付活跃用户

移动支付活跃用户

合计

合计

查看答案和解析>>

同步练习册答案