ÓÐÒÔÏÂËĸöÃüÌ⣺
¢ÙÈôÃüÌâp£º?x¡ÊR£¬x£¾sinx£¬Ôò?p£º?x¡ÊR£¬x£¼sinx
¢Úº¯Êýy=sin£¨x-
¦Ð
2
)ÔÚ[0£¬¦Ð
]ÔÚRÉÏÊÇÆ溯Êý£®
¢Û°Ñº¯Êýy=3sin£¨2x+
¦Ð
3
)µÄͼÏóÏòÓÒƽÒÆ
¦Ð
6
Ïò×óƽÒÆ
¦Ð
6
µÃµ½y=3sin2xµÄͼÏó£®
¢ÜÈôº¯Êýf£¨x£©=-cos2x+
1
2
£¨x¡ÊR£©£¬Ôòf£¨x£©ÊÇ×îСÕýÖÜÆÚΪ¦Õ=
¦Ð
3
µÄżº¯Êý
¢ÝÉèÔ²x2+y2-4x-2y-8=0ÉÏÓйØÓÚÖ±Ïßax+2by-2=0£¨a£¬b£¾0£©¶Ô³ÆµÄÁ½µã£¬Ôò
1
a
+
2
b
µÄ×îСֵΪ3+2
2

ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
 
£¨°ÑÄãÈÏΪÕýÈ·ÃüÌâµÄÐòºÅ¶¼ÌîÉÏ£©£®
·ÖÎö£ºÈôÃüÌâp£º?x¡ÊR£¬x£¾sinx£¬Ôò?p£º?x¡ÊR£¬x¡Üsinx£»º¯Êýy=sin£¨x-
¦Ð
2
)ÔÚ[0£¬¦Ð
=-cosx£¬ÔÚRÉÏÊÇżº¯Êý£»°Ñº¯Êýy=3sin£¨2x+
¦Ð
3
)µÄͼÏóÏòÓÒƽÒÆ
¦Ð
6
×óƽÒÆ
¦Ð
6
µÃµ½y=3sin£¨2x+
2¦Ð
3
£©µÄͼÏó£»Èôº¯Êýf£¨x£©=-cos2x+
1
2
=-
1
2
cos2x
£¨x¡ÊR£©£¬Ôòf£¨x£©ÊÇ×îСÕýÖÜÆÚΪ¦Õ=¦ÐµÄżº¯Êý£»Ô²µÄÔ²ÐÄÊÇ£¨2£¬1£©£¬°Ñ£¨2£¬1£©´úÈëÖ±Ïߣ¬µÃa+b=1£¬
1
a
+
2
b
=£¨
1
a
+
2
b
£©£¨a+b£©=3+
2a
b
+
b
a
¡Ý3+2
2
£®
½â´ð£º½â£º¢ÙÈôÃüÌâp£º?x¡ÊR£¬x£¾sinx£¬Ôò?p£º?x¡ÊR£¬x¡Üsinx£¬¹Ê¢Ù²»ÕýÈ·£®
¢Úº¯Êýy=sin£¨x-
¦Ð
2
)ÔÚ[0£¬¦Ð
=-cosx£¬ÔÚRÉÏÊÇżº¯Êý£¬¹Ê¢Ú²»ÕýÈ·£®
¢Û°Ñº¯Êýy=3sin£¨2x+
¦Ð
3
)µÄͼÏóÏòÓÒƽÒÆ
¦Ð
6
×óƽÒÆ
¦Ð
6
µÃµ½y=3sin£¨2x+
2¦Ð
3
£©µÄͼÏ󣬹ʢ۲»ÕýÈ·£®
¢ÜÈôº¯Êýf£¨x£©=-cos2x+
1
2
=-
1
2
cos2x
£¨x¡ÊR£©£¬Ôòf£¨x£©ÊÇ×îСÕýÖÜÆÚΪ¦Õ=¦ÐµÄżº¯Êý£¬¹Ê¢Ü²»ÕýÈ·£®
¢ÝÔ²µÄÔ²ÐÄÊÇ£¨2£¬1£©
Ö±Ïßƽ·ÖÔ²µÄÖܳ¤£¬ËùÒÔÖ±Ïߺã¹ýÔ²ÐÄ£¨2£¬1£©
°Ñ£¨2£¬1£©´úÈëÖ±Ïߣ¬µÃa+b=1
1
a
+
2
b
=£¨
1
a
+
2
b
£©£¨a+b£©=3+
2a
b
+
b
a
¡Ý3+2
2
£®
¹Ê¢Ý³ÉÁ¢£®
¹Ê´ð°¸Îª£º¢Ý£®
µãÆÀ£º±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжϺÍÓ¦Ó㬽âÌâʱҪעÒâÃüÌâµÄ·ñ¶¨ÐÎʽ¡¢Èý½Çº¯Êý¡¢Ô²µÄÐÔÖÊ¡¢¾ùÖµ¶¨ÀíµÈ֪ʶµãµÄÁé»îÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÓÐÒÔÏÂËĸöÃüÌ⣺
¢Ùº¯Êýy=sin2xºÍͼÏó¿ÉÒÔÓÉy=sin(2x+
¦Ð
4
)
ÏòÓÒƽÒÆ
¦Ð
4
¸öµ¥Î»¶øµÃµ½£»
¢ÚÔÚ¡÷ABCÖУ¬ÈôbcosB=ccosC£¬Ôò¡÷ABCÒ»¶¨ÊǵÈÑüÈý½ÇÐΣ»
¢Û|x|£¾3ÊÇx£¾4µÄ±ØÒªÌõ¼þ£»
¢ÜÒÑÖªº¯Êýf£¨x£©=sinx+lnx£¬Ôòf¡ä£¨1£©µÄֵΪ1+cos1£®Ð´³öËùÓÐÕæÃüÌâµÄÐòºÅ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

11¡¢ÒÑÖªÖ±Ïßa£¬bºÍƽÃæ¦Á£¬ÓÐÒÔÏÂËĸöÃüÌ⣺¢ÙÈôa¡Î¦Á£¬a¡Îb£¬Ôòb¡Î¦Á£»¢ÚÈôa?¦Á£¬b¡É¦Á=A£¬ÔòaÓëbÒìÃ棻¢ÛÈôa¡Îb£¬b¡Í¦Á£¬Ôòa¡Í¦Á£»¢ÜÈôa¡Íb£¬a¡Í¦Á£¬Ôòb¡Î¦Á£®ÆäÖÐÕæÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹ØÓÚÖ±Ïßm£¬nºÍƽÃæ¦Á£¬¦Â£¬ÓÐÒÔÏÂËĸöÃüÌ⣺
¢ÙÈôm¡Î¦Á£¬n¡Î¦Â£¬¦Á¡Î¦Â£¬Ôòm¡În£»
¢ÚÈôm¡În£¬m?¦Á£¬n¡Í¦Â£¬Ôò¦Á¡Í¦Â£»
¢ÛÈô¦Á¡É¦Â=m£¬m¡În£¬Ôòn¡Î¦ÁÇÒn¡Î¦Â£»
¢ÜÈôm¡Ín£¬¦Á¡É¦Â=m£¬Ôòn¡Í¦Á»òn¡Í¦Â£®
ÆäÖмÙÃüÌâµÄÐòºÅÊÇ
¢Ù¢Û¢Ü
¢Ù¢Û¢Ü
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÓÐÒÔÏÂËĸöÃüÌ⣺¢ÙÈôÃüÌâP£º?x¡ÊR£¬sinx¡Ü1£¬Ôò©VP£º?x¡ÊR£¬sinx£¾1£»¢Ú?¦Á£¬¦Â¡ÊR£¬Ê¹µÃsin£¨¦Á+¦Â£©=sin¦Á+sin¦Â£»¢ÛÈô{an}ΪµÈ±ÈÊýÁУ»¼×£ºm+n=p+q£¨m¡¢n¡¢p¡¢q¡ÊN*£©    ÒÒ£ºam•an=ap•aq£¬Ôò¼×ÊÇÒҵijäÒªÌõ¼þ£»¢ÜÉèp¡¢qÊǼòµ¥ÃüÌ⣬Èô¡°p¡Åq¡±Îª¼ÙÃüÌ⣬Ôò¡°?p¡Ä?q¡±ÎªÕæÃüÌ⣮ÆäÖÐÕæÃüÌâµÄÐòºÅ
¢Ú¢Ü
¢Ú¢Ü
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºËÄ´¨Ê¡Ë«Á÷ÏØÌĺþÖÐѧ2012½ì¸ßÈý3ÔÂÔ¿¼ÊýѧÎÄ¿ÆÊÔÌâ ÌâÐÍ£º013

Éèm¡¢nÊDz»Í¬µÄÖ±Ïߣ¬¦Á¡¢¦Â¡¢¦ÃÊDz»Í¬µÄƽÃ棬ÓÐÒÔÏÂËĸöÃüÌ⣺

(1)Èô¦Á¡Î¦Â£¬¦Á¡Î¦Ã£¬Ôò¦Â¡Î¦Ã

(2)Èô¦Á¡Í¦Â£¬m¡Î¦Á£¬Ôòm¡Í¦Â

(3)Èôm¡Í¦Á£¬m¡Î¦Â£¬Ôò¦Á¡Í¦Â

(4)Èôm¡În£¬n¦Á£¬Ôòm¡Î¦Á

ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ

[¡¡¡¡]

A£®(1)(4)

B£®(2)(3)

C£®(2)(4)

D£®(1)(3)

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸